Skip to main content

Lucas Numbers Which are Products of Two Balancing Numbers

  • Chapter
  • First Online:
Notes from the International Autumn School on Computational Number Theory

Abstract

In this paper, we find all Lucas numbers, which are products of two balancing numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 18.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker A., Davenport H.: The equations \( 3x^{2}-2=y^{2}\) and \(8x^{2}-7=z^{2},\) Quart. J. Math. Oxford Ser. (2), 20(1) (1969),129–137.

    Google Scholar 

  2. Behera A., Panda G. K.: On the square roots of triangular numbers, Fibonacci Quarterly, 37(2) (1999), 98–105.

    MathSciNet  MATH  Google Scholar 

  3. Bugeaud Y., Mignotte M., Siksek S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163(3), (2006), 969–1018.

    Article  MathSciNet  Google Scholar 

  4. Ddamulira M., Luca F., Rakotomalala M.: Fibonacci Numbers which are products of two Pell numbers,Fibonacci Quart.,54 (1) (2016), 11–18.

    MathSciNet  MATH  Google Scholar 

  5. Dujella A., Pethő A.: A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49 (3) (1998), 291–306.

    Article  MathSciNet  Google Scholar 

  6. Farrokhi D. G. M.: Some remarks on the equation \( F_{n}=kF_{m}\) in Fibonacci numbers, Journal of Integer Sequences, 10, 1–9 (2007)

    Google Scholar 

  7. Irmak N.: Balancing with Balancing powers, Miskolc Mathematical Notes, Vol. 14 (2013), No. 3, pp. 951–957.

    Article  MathSciNet  Google Scholar 

  8. Keskin R., Karaatlı O.: Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article 12.1.4.

    Google Scholar 

  9. Keskin R., Demirtürk Bitim B.: Fibonacci and Lucas Congruences and Their Applications, Acta Mathematica Sinica, English Series, 27(4) (2011), 725–736.

    Article  MathSciNet  Google Scholar 

  10. Keskin R., Şiar Z.: On the Lucas Sequence Equations \(V_{n}=kV_{m}\) and \(U_{n}=kU_{m},\) Colloquium Mathematicum, 130(1) (2013), 27–38.

    Article  MathSciNet  Google Scholar 

  11. Koshy T.: Fibonacci and Lucas Numbers With Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.

    Google Scholar 

  12. Matveev E. M.: An Explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat., 64(6) (2000), 125-180 (Russian). Translation in Izv. Math. 64(6) (2000), 1217–1269.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referee for the valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Şiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şiar, Z. (2019). Lucas Numbers Which are Products of Two Balancing Numbers. In: Inam, I., Büyükaşık, E. (eds) Notes from the International Autumn School on Computational Number Theory. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12558-5_8

Download citation

Publish with us

Policies and ethics