Skip to main content

On a Few Equivalent Statements of a Hilbert-Type Integral Inequality in the Whole Plane with the Hurwitz Zeta Function

  • Chapter
  • First Online:
Analysis and Operator Theory

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 146))

  • 927 Accesses

  • 1 Citations

Abstract

In the present paper, we prove some equivalent statements of a Hilbert-type integral inequality in the whole plane with intermediate variables. In our theorems, the constant factor is associated to the Hurwitz zeta function and we prove that it is the best possible. We also derive various special cases and applications.

On the occasion of the 100th birthday of Tosio Kato

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schur, I.: Bernerkungen sur Theorie der beschrankten Billnearformen mit unendlich vielen Veranderlichen. J. Math. 140, 1–28 (1911)

    Google Scholar 

  2. Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2) (1925). Records of Proc. xlv-xlvi

    Google Scholar 

  3. Hardy, G.H., Littlewood, J.E., P\(\acute{o}\)lya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  4. Yang, B.C.: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778–785 (1998)

    Article  MathSciNet  Google Scholar 

  5. Yang, B.C.: A note on Hilbert’s integral inequality. Chin. Q. J. Math. 13(4), 83–86 (1998)

    MATH  Google Scholar 

  6. Yang, B.C.: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 1(1), 1–8 (2004). Art. 11

    Google Scholar 

  7. Yang, B.C., Brneti\(\acute{c}\), I., Krni\(\acute{c}\), M., Pe\( \breve{c}\)ari\(\acute{c}\), J.E.: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259–272 (2005)

    Google Scholar 

  8. Krni\(\acute{c}\), M., Pe\(\breve{c}\)ari\(\acute{c}\), J.E.: Hilbert’s inequalities and their reverses. Publ. Math. Debrecen 67(3–4), 315–331 (2005)

    Google Scholar 

  9. Hong, Y.: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 1–10 (2005). Art. 92

    Google Scholar 

  10. Arpad, B., Choonghong, O.: Best constant for certain multi linear integral operator. J. Inequal. Appl. 28582 (2006)

    Google Scholar 

  11. Li, Y.J., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007)

    Article  Google Scholar 

  12. Zhong, W.Y., Yang, B.C.: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, 17 pp. (2007). Art. ID 27962

    Google Scholar 

  13. Xu, J.S.: Hardy-Hilbert’s Inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007)

    MathSciNet  Google Scholar 

  14. Rassias, M.Th., Yang, B.C.: On a multidimensional half - discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2014)

    Google Scholar 

  15. Rassias, M.Th., Yang, B.C.: A Hilbert - type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)

    Google Scholar 

  16. Rassias, M.Th., Yang, B.C.: On a Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 7(1), 249–269 (2016)

    Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  18. Kato, T.: Variation of discrete spectra. Commun. Math. Phys. 111(3), 501–504 (1987)

    Article  MathSciNet  Google Scholar 

  19. Kato, T., Satake, I.: An algebraic theory of Landau-Kolmogorov inequalities. Tohoku Math. J. 33(3), 421–428 (1981)

    Article  MathSciNet  Google Scholar 

  20. Kato, T.: On an inequality of Hardy, Littlewood, and P\(\acute{o}\)lya. Adv. Math. 7, 217–218 (1971)

    Article  Google Scholar 

  21. Kato, T.: Demicontinuity, hemicontinuity and monotonicity, II. Bull. Am. Math. Soc. 73, 886–889 (1967)

    Article  MathSciNet  Google Scholar 

  22. Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  23. Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., The United Emirates (2009)

    Google Scholar 

  24. Yang, B.C.: On Hilbert-type integral inequalities and their operator expressions. J. Guangaong Univ. Edu. 33(5), 1–17 (2013)

    MATH  Google Scholar 

  25. Yang, B.C.: A new Hilbert-type integral inequality. Soochow J. Math. 33(4), 849–859 (2007)

    Google Scholar 

  26. He, B., Yang, B.C.: On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function. Math. Pract. Theory 40(18), 105–211 (2010)

    MathSciNet  Google Scholar 

  27. Yang, B.C.: A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. (Science Edition) 46(6), 1085–1090 (2008)

    MathSciNet  Google Scholar 

  28. Zeng, Z., Xie, Z.T.: On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequal. Appl. 2010, 9 pp. (2010). Article ID 256796

    Google Scholar 

  29. Wang, A.Z., Yang, B.C.: A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, 123 (2011)

    Article  MathSciNet  Google Scholar 

  30. Xin, D.M., Yang, B.C.: A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree -2. J. Inequal. Appl. 2011, 11 pp. (2011). Article ID 401428

    Google Scholar 

  31. He, B., Yang, B.C.: On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsul Oxf. J. Inf. Math. Sci. 27(1), 75–88 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree -2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Huang, Q.L., Wu, S.H., Yang, B.C.: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, 8 pp. (2014). Article ID 169061

    Google Scholar 

  34. Zheng, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)

    Google Scholar 

  35. Huang, X.Y., Cao, J.F., He, B., Yang, B.C.: Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. J. Inequal. Appl. 2015, 129 (2015)

    Article  MathSciNet  Google Scholar 

  36. Gu, Z.H., Yang, B.C.: A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequal. Appl. 2015, 314 (2015)

    Article  MathSciNet  Google Scholar 

  37. Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernal and applications. J. Jilin Univ. (Science Edition) 55(2), 189–194 (2017)

    Google Scholar 

  38. Rassias, M.Th., Yang, B.C.: Equivalent properties of a Hilbert-type integral inequality with the best constant factor related the Hurwitz zeta function. Ann. Funct. Anal. 9(2), 282–295 (2018)

    Google Scholar 

  39. Hong, Y., Huang, Q.L., Yang, B.C., Liao, J.Q.: The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequal. Appl. 2017, 316 (2017)

    Article  MathSciNet  Google Scholar 

  40. Yang, B.C., Chen, Q.: Equivalent conditions of existence of a class of reverse Hardy-type integral inequalities with nonhomogeneous kernel. J. Jilin Univ. (Science Edition) 55(4), 804–808 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Yang, B.C.: Equivalent conditions of the existence of Hardy-type and Yang-Hilbert-type integral inequalities with nonhomogeneous kernel. J. Guangdong Univ. Edu. 37(3), 5–10 (2017)

    Google Scholar 

  42. Yang, B.C.: On some equivalent conditions related to the bounded property of Yang-Hilbert-type operator. J. Guangdong Univ. Edu. 37(5), 5–11 (2017)

    Google Scholar 

  43. Yang, Z.M., Yang, B.C.: Equivalent conditions of the existence of the reverse Hardy-type integral inequalities with the nonhomogeneous kernel. J. Guangdong Univ. Edu. 37(5), 28–32 (2017)

    MathSciNet  Google Scholar 

  44. Kuang, J.C.: Real and Functional Analysis (Continuation) (second volume). Higher Education Press, Beijing (2015)

    Google Scholar 

  45. Wang, J.Q., Guo, D.R.: Introduction to Special Functions. Science Press, Beijing (1979)

    Google Scholar 

  46. Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (No. 617721-40), and Science and Technology Planning Project Item of Guangzhou City (No. 201707010229). We are grateful for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistocles M. Rassias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rassias, T.M., Yang, B. (2019). On a Few Equivalent Statements of a Hilbert-Type Integral Inequality in the Whole Plane with the Hurwitz Zeta Function. In: Rassias, T.M., Zagrebnov, V.A. (eds) Analysis and Operator Theory . Springer Optimization and Its Applications, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-030-12661-2_15

Download citation

Publish with us

Policies and ethics