Abstract
The vision of automated support for the investigation of logics, proposed decades ago, has been implemented in many forms, producing numerous tools that analyze various logical properties (e.g., cut-elimination, semantics, and more). However, full ‘automation of automated reasoning’ in the sense of automatic generation of efficient provers has remained a ‘holy grail’ of the field. Creating a generic prover which can efficiently reason in a given logic is challenging, as each logic may be based on a different language, and involve different inference rules, that require different implementation considerations to achieve efficiency, or even tractability. Two recently introduced generic automated provers apply different approaches to tackle this challenge. \({\text {MetTeL}}\), based on the formalism of tableaux, automatically generates a prover for a given tableau calculus, by implementing generic proof-search procedures with optimizations applicable to many tableau calculi. \({\text {Gen2sat}}\), based on the formalism of sequent calculi, shifts the burden of search to the realm of off-the-shelf SAT solvers by applying a uniform reduction of derivability in sequent calculi to SAT. This paper examines these two generic provers, focusing in particular on criteria relevant for comparing their performance and usability. To this end, we evaluate the performance of the tools, and describe the results of a preliminary empirical study where user experiences of expert logicians using the two tools are compared.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here sequents are taken to be pairs of sets of formulas, and therefore exchange and contraction are built in.
- 2.
Paralyzer is a tool that transforms Hilbert calculi of a certain general form into equivalent analytic sequent calculi. It was described in [12] and can be found at http://www.logic.at/people/lara/paralyzer.html.
- 3.
Note that a translation of \(\mathcal{T}\) to a sequent calculus is less obvious, as this is a three-sided calculus, where \({\text {Gen2sat}}\) employs ordinary two-sided sequents.
- 4.
References
Abate, P., Goré, R.: The tableau workbench. Electron. Notes Theor. Comput. Sci. 231, 55–67 (2009)
Aitken, S., Melham, T.: An analysis of errors in interactive proof attempts. Interact. Comput. 12(6), 565–586 (2000)
Areces, C.E.: Logic engineering: the case of description and hybrid logics. Ph.D. thesis, University of Amsterdam (2000)
Asperti, A., Coen, C.S.: Some considerations on the usability of interactive provers. In: Autexier, S., et al. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp. 147–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14128-7_13
Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–139 (1991)
Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: Fitting, M., Orłowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued Logic. Studies in Fuzziness and Soft Computing, vol. 114, pp. 117–155. Physica-Verlag, Heidelberg (2003). https://doi.org/10.1007/978-3-7908-1769-0_5
Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Logica 69, 5–40 (2001)
Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: MUltlog 1.0: towards an expert system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_84
Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods. J. Autom. Reason. 1–27 (2019). https://doi.org/10.1007/s10817-019-09515-1
Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_1
Caridroit, T., Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: A SAT-based approach for solving the modal logic S5-satisfiability problem. In: Singh, S.P., Markovitch, S. (eds.) Thirty-First AAAI Conference on Artificial Intelligence, pp. 3864–3870. AAAI Press (2017)
Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_9
Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and other) logics: an algorithmic approach. ACM Trans. Comput. Logic 16(1), 5:1–5:23 (2014)
Ciabattoni, A., Spendier, L.: Tools for the investigation of substructural and paraconsistent logics. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_2
Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: Logic in Computer Science (LICS 2003), pp. 271–280. IEEE Computer Society (2003)
Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and completeness in modal logic I: the core algorithm SQEMA. Log. Methods Comput. Sci. 2, 1–5 (2006)
Cotrini, C., Gurevich, Y.: Basic primal infon logic. J. Logic Comput. 26(1), 117 (2016)
Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press (2001)
Dixon, C., Konev, B., Schmidt, R.A., Tishkovsky, D.: Labelled tableaux for temporal logic with cardinality constraints. In: Proceedings of the 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pp. 111–118. IEEE Computer Society (2012)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited: a reduction algorithm. J. Autom. Reason. 18(3), 297–336 (1997)
Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. Formal Logic 13(2), 237–247 (1972)
Gaschnig., J.: Performance measurement and analysis of certain search algorithms. Ph.D. thesis, Carnegie-Mellon University (1979)
Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: logical tableaux research engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_25
Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210 (1934)
Ginsberg, M.L., McAllester, D.A.: GSAT and dynamic backtracking. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Principles of Knowledge Representation and Reasoning (KR 1994), pp. 226–237. Morgan Kaufmann (1994)
Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for classical modal logics. J. Autom. Reason. 28(2), 143–171 (2002)
Gorín, D., Pattinson, D., Schröder, L., Widmann, F., Wißmann, T.: Cool – a generic reasoner for coalgebraic hybrid logics (system description). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 396–402. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_31
Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think. Commun. ACM 28(3), 300–311 (1985)
Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)
Heuerding, A., Jäger, G., Schwendimann, S., Seyfried, M.: The logics workbench LWB: a snapshot. Euromath Bull. 2(1), 177–186 (1996)
Humberstone, I.L.: The modal logic of ‘all and only’. Notre Dame J. Formal Logic 28(2), 177–188 (1987)
Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69778-0_22
Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 436–442. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_31
Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Math. Logic Q. 33(5), 423–432 (1987)
Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: MetTeL. http://www.mettel-prover.org
Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with controlled blocking for the description logic \(\cal{SHOI}\). In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp. 188–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-2_17
Khodadadi, M., Schmidt, R.A., Tishkovsky, D., Zawidzki, M.: Terminating tableau calculi for modal logic K with global counting operators (2012). http://www.mettel-prover.org/papers/KEn12.pdf
Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1950)
Koopmann, P., Schmidt, R.A.: LETHE: saturation-based reasoning for non-standard reasoning tasks. In: Dumontier, M., et al. (eds.) OWL Reasoner Evaluation (ORE-2015), CEUR Workshop Proceedings, vol. 1387, pp. 23–30 (2015)
Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: On checking Kripke models for modal logic K. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Practical Aspects of Automated Reasoning (PAAR 2016), CEUR Workshop Proceedings, vol. 1635, pp. 69–81 (2016)
Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 76–90. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_6
Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. J. Satisf. Boolean Model. Comput. 7, 59–64 (2010)
Lukasiewicz, J., Tarski, A.: Investigations into the sentential calculus. Borkowski 12, 131–152 (1956)
Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theor. Comput. Sci. 474, 98–116 (2013)
Minica, S., Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: Synthesising and implementing tableau calculi for interrogative epistemic logics. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) Practical Aspects of Automated Reasoning (PAAR-2012). EPiC Series in Computing, vol. 21, pp. 109–123. EasyChair (2012)
Nielsen, J.: Usability inspection methods. In: Plaisant, C. (ed.) Conference on Human Factors in Computing Systems (CHI 1994), pp. 413–414. ACM (1994)
Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about proof systems. J. Logic Comput. 26, 539–576 (2014)
Nigam, V., Reis, G., Lima, L.: Quati: an automated tool for proving permutation lemmas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 255–261. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_18
Ohlbach, H.J.: Computer support for the development and investigation of logics. Logic J. IGPL 4(1), 109–127 (1996)
Ohlbach, H.J.: SCAN—elimination of predicate quantifiers. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 161–165. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_77
Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput. Intell. 9, 268–299 (1993)
Rothenberg, R.: A class of theorems in Łukasiewicz logic for benchmarking automated theorem provers. In: TABLEAUX, Automated Reasoning with Analytic Tableaux and Related Methods, Position Papers, vol. 7, pp. 101–111 (2007)
Schmidt, R.A., Stell, J.G., Rydeheard, D.: Axiomatic and tableau-based reasoning for Kt(H, R). In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in Modal Logic, vol. 10, pp. 478–497. College Publications (2014)
Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Methods Comput. Sci. 7(2), 1–32 (2011)
Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role negation and identity. ACM Trans. Comput. Logic 15(1), 7:1–7:31 (2014)
Schmidt, R.A., Waldmann, U.: Modal tableau systems with blocking and congruence closure. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 38–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_4
Sette, A.M.: On the propositional calculus P1. Math. Japonicae 18(13), 173–180 (1973)
Smullyan, R.M.: First Order Logic. Springer, Berlin (1971)
Stell, J.G., Schmidt, R.A., Rydeheard, D.E.: A bi-intuitionistic modal logic: foundations and automation. J. Log. Algebraic Methods Program. 85(4), 500–519 (2016)
Tishkovsky, D., Schmidt, R.A.: Rule refinement for semantic tableau calculi. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 228–244. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_14
Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: \(MetTeL\): a tableau prover with logic-independent inference engine. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 242–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4_19
Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: towards a tableau prover generation platform. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) Practical Aspects of Automated Reasoning (PAAR-2012). EPiC Series in Computing, vol. 21, pp. 149–162. EasyChair (2012)
Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_41
Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 61–145. Springer, Dordrecht (2002)
Zawidzki, M.: Deductive systems and decidability problem for hybrid logics. Ph.D. thesis, Faculty of Philosophy and History, University of Lodz (2013)
Zhao, Y., Schmidt, R.A.: Forgetting concept and role symbols in \(\cal{ALCOIH}\mu ^+(\nabla ,\sqcap )\)-ontologies. In: Kambhampati, S. (ed.) International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1345–1352. AAAI Press/IJCAI (2016)
Zohar, Y.: Gen2sat. http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
Zohar, Y., Zamansky, A.: Gen2sat: an automated tool for deciding derivability in analytic pure sequent calculi. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 487–495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_33
Acknowledgments
We thank Francesco Genco, Yotam Feldman, Roman Kuznets, Giselle Reis, João Marcos, and Bruno Woltzenlogel Paleo for providing valuable feedback on both tools. e also thank Mohammad Khodadadi for useful discussions and setting up the \({\text {MetTeL}}\) website. he research of the first and fourth authors was supported by The Israel Science Foundation (grant no. 817-15). The research of the second and third authors was supported by UK EPSRC research grant EP/H043748/1.
Last but not least, we extend our best wishes to Franz Baader on the occasion of his 60th birthday. It is an immense privilege to have been asked to contribute to this volume.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zohar, Y., Tishkovsky, D., Schmidt, R.A., Zamansky, A. (2019). Automating Automated Reasoning. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, AY., Wolter, F. (eds) Description Logic, Theory Combination, and All That. Lecture Notes in Computer Science(), vol 11560. Springer, Cham. https://doi.org/10.1007/978-3-030-22102-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-22102-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22101-0
Online ISBN: 978-3-030-22102-7
eBook Packages: Computer ScienceComputer Science (R0)