Skip to main content

Biocontrol Agents Against Diseases

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

Biological control against plant diseases has been extensively studied in recent decades, leading to the identification and development of a significant number of biocontrol agents with various modes of action. Considerable scientific and industrial investments are needed for the development and the commercialization of these protection tools. One of the main issue for the adoption of biocontrol by farmers is the reliability and stability of its efficacy in field conditions including greenhouses. Efficacy of biocontrol agents (especially that of microbes) is managed by complex factors linked to the changeable environmental conditions encountered in the field (e.g. microclimatic variations) and to farming practices (e.g. compatibility with other control methods, plant fertirrigation). Efficacy is also linked to the biological properties of the biocontrol agent (e.g. ecological competence, quality of the products, mode of application, mechanism of action, persistence of its efficacy) and of the plant pathogen (e.g. type of disease, inoculum pressure, diversity of sensitivity). In this chapter, examples of biocontrol agents used against soil-borne and foliar diseases, their modes of action as well as the factors of their efficacy will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abro MA, Lecompte F, Bardin M, Nicot PC (2014) Nitrogen fertilization impacts biocontrol of tomato gray mold. Agron Sustain Dev 34:641–648

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Oxford

    Google Scholar 

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566

    Article  CAS  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front Plant Sci 8:7

    Google Scholar 

  • Angeli D, Saharan K, Segarra G, Sicher C, Pertot I (2017) Production of Ampelomyces quisqualis conidia in submerged fermentation and improvements in the formulation for increased shelf-life. Crop Prot 97:135–144

    Article  CAS  Google Scholar 

  • Bardin M, Fargues J, Nicot PC (2008) Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biol Control 46:476–483

    Article  Google Scholar 

  • Bardin M, Ajouz S, Comby M et al (2015) Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 6

    Google Scholar 

  • Beardon E, Scholes J, Ton J (2014) How do beneficial microbes induce systemic resistance? Wiley, Chichester

    Book  Google Scholar 

  • Bélanger RR, Labbé C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS press, St. Paul, pp 256–267

    Google Scholar 

  • Benedui A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  Google Scholar 

  • Bennett AJ, Leifert C, Whipps JM (2006) Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem 38:164–172

    Article  CAS  Google Scholar 

  • Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–192

    Article  Google Scholar 

  • Bokshi AI, Jobling J, Mcconchie R (2008) A single application of Milsana (R) followed by Bion (R) assists in the control of powdery mildew in cucumber and helps overcome yield losses. J Hortic Sci Biotechnol 83:701–706

    Article  CAS  Google Scholar 

  • Bouaoud Y, Troulet C, Foughalia A, Berge O, Aissat K, Bardin M (2018) A multi-criteria approach for the selection of efficient biocontrol agents against Botrytis cinerea on tomato in Algeria. BioControl 63:299

    Article  Google Scholar 

  • Boukaew S, Prasertsan P, Troulet C, Bardin M (2017) Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 62:793–803

    Article  CAS  Google Scholar 

  • Budge SP, Whipps JM (2001) Potential of integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Biol Control 91:221–227

    CAS  Google Scholar 

  • Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1340–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffi T, Legler SE, Bugiani R, Rossi V (2013) Combining sanitation and disease modelling for control of grapevine powdery mildew. Eur J Plant Pathol 135:817–829

    Article  Google Scholar 

  • Calvo-Garrido C, Elmer PG, Vinas I, Usall J, Bartra E, Teixido N (2013) Biological control of Botrytis bunch rot in organic wine grapes with the yeast antagonist Candida sake CPA-1. Plant Pathol 62:510–519

    Article  Google Scholar 

  • Cerkauskas RF (2017) Etiology and management of Fusarium crown and root rot (Fusarium oxysporum) on greenhouse pepper in Ontario, Canada. Can J Plant Pathol 39:121–132

    Article  Google Scholar 

  • Chatterton S, Jayaraman J, Punja ZK (2008) Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulata. Biol Control 46:267–278

    Article  Google Scholar 

  • Chitrampalam P, Figuli PJ, Matheron ME, Subbarao KV, Pryor BM (2008) Biocontrol of letuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Dis 92:1625–1634

    Article  CAS  PubMed  Google Scholar 

  • Chitrampalam P, Cox CA, Turini TA, Pryor BM (2010a) Efficacy of Coniothyrium minitans on lettuce drop caused by Sclerotinia minor in desert agroecosystem. Biol Control 55:92–96

    Article  Google Scholar 

  • Chitrampalam P, Turini TA, Matheron ME, Pryor BM (2010b) Effect of Sclerotium density and irrigation on disease incidence and on efficacy of Coniothyrium minitans in suppressing lettuce drop caused by Sclerotinia sclerotiorum. Plant Dis 94:1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Daayf F, Schmitt A, Belanger RR (1997) Evidence of phytoalexins in cucumber leaves infected with powdery mildew-following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiol 113:719–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Daayf F, Ongena M, Boulanger R, El Hadrami I, Belanger RR (2000) Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J Chem Ecol 26:1579–1593

    Google Scholar 

  • Deketelaere S, Tyvaert L, Franca SC, Hofte M (2017) Desirable traits of a good biocontrol agent against Verticilliumwilt. Front Microbiol 8:1186

    Google Scholar 

  • Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

    Article  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Ehret DL, Menzies JG, Bogdanoff C, Utkhede RS, Frey B (2002) Foliar applications of fertilizer salts inhibit powdery mildew on tomato. Can J Plant Pathol 24:437–444

    Article  CAS  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Elad Y, Stewart A (2004) Microbial control of Botrytisspp. In: Elad Y et al (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers. The Netherlands, pp 223-41 

    Chapter  Google Scholar 

  • Elad Y, Hadar Y, Chet I, Henis Y (1982) Prevention with Trichoderma harzianumRafai agrr. on reinfestation by Sclerotium rolfsii Sacc. and Rhizoctonia solani Kuehn of soil fumigated with methyl bromide, and improvement of disease control in tomatoes and peanuts. Crop Prot 1:199–211

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • Elshahawy IE, Haggag KHE, Abd-El-Khair H (2016) Compatibility of Trichoderma spp. with seven chemical fungicides used in the control of soil-borne plant pathogens. Res J Pharm, Biol Chem Sci 7:1772–1785

    CAS  Google Scholar 

  • Fallik E, Ziv O, Grinberg S, Alkalai S, Klein JD (1997) Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce the development of postharvest fruit rotting. Phytoparasitica 25:41–43

    Article  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fillinger S, Ajouz S, Nicot PC, Leroux P, Bardin M (2012) Functional and Structural Comparison of Pyrrolnitrin- and Iprodione-Induced Modifications in the Class III Histidine-Kinase Bos1 of Botrytis cinerea. PLoS One 7:e42520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fofana B, Mcnally DJ, Labbe C et al (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pathol 61:121–132

    Article  CAS  Google Scholar 

  • Galletti S, Sala E, Leoni O, Burzi PL, Cerato C (2008) Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biol Control 45:319–327

    Article  Google Scholar 

  • Gamlilel A, Hadar E, Katan J (1993) Improvement of growth and yield of Gypsophila paniculata by solarization or fumigation of soil or container media in continuous cropping systems. Plant Dis 77:933–938

    Article  Google Scholar 

  • Garibaldi A, Brunatti F, Gullino ML (1986) Suppression of Fusarium wilt of carnation by competitive non-pathogenic strains of Fusaria. Med Fac Landbouw Rijksuniv Gent 51:633–638

    Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2016) Evaluation of the short term effect of nursery treatments with phosphite-based products, acibenzolar-S-methyl, pelleted Brassica carinata and biocontrol agents, against lettuce and cultivated rocket Fusarium wilt under artificial and greenhouse conditions. Crop Prot 85:23–32

    Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A (2018) Emerging foliar and soil-borne pathogens of leafy vegetable crops: a possible threat to Europe. Bull OEPP/EPPO Bull 48:116–127

    Article  Google Scholar 

  • Gonzalez LC, Nicao MEL, Muino BL, Perez RH, Sanchez DG (2015) In vitro effect of commercial pesticides on Trichoderma harzianum strain A-34. Rev Fac Cienc Agrarias 47:185–196

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  CAS  PubMed  Google Scholar 

  • Gwynn RL (2014) The manual of biocontrol agents, 5th edn. BCPC, Hampshire

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannusch DJ, Boland GJ (1996) Interactions of air temperature, relative humidity and biological control agents on grey mold of bean. Eur J Plant Pathol 102:133–142

    Article  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hofstein R, Daoust RA, Aeschlimann JP (1996) Constraints to the development of biofungicides: the example of “AQ10”, a new product for controlling powdery mildews. Entomophaga 41:455–460

    Article  Google Scholar 

  • Hoitink HAJ, Locke JC (2013) An integrated approach to biological control of Fusarium species in containerized crops. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilt of greenhouse vegetable and ornamental crops. American Phytopathological Society, St. Paul, pp 109–115

    Google Scholar 

  • Jayamma P, Subhash Reddy R, Vijaya Gopal A, Triveni S (2013) Compatibility studies of Pseudomonas fluorescens isolates with commonly used agrochemicals. Pollut Res 32:843–847

    Google Scholar 

  • Jones EE, Stewart A, Whipps JM (2011) Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia. Fungal Biol 115:871–881

    Article  PubMed  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianumon the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137

    Article  CAS  Google Scholar 

  • Katan J (2015) Integrated pest management in connection with soil disinfestation. Acta Hortic 1044:19–28

    Google Scholar 

  • Katan J (2017) Diseases caused by soilborne pathogens: biology, management and challenges. J Plant Pathol 99:305–315

    Google Scholar 

  • Kiss L, Russell JC, Szentivanyi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Tech 14:635–651

    Article  Google Scholar 

  • Kiss L, Pintye A, Kovacs GM et al (2011) Temporal isolation explains host-related genetic differentiation in a group of widespread mycoparasitic fungi. Mol Ecol 20:1492–1507

    Article  PubMed  Google Scholar 

  • Kohl J, Molhoek WML (2001) Effect of water potential on conidial germination and antagonism of Ulocladium atrum against Botrytis cinerea. Phytopathology 91:485–491

    Article  PubMed  Google Scholar 

  • Kohl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57:1–12

    Article  Google Scholar 

  • Konstantinidou-Doltsinis S, Markellou E, Kasselaki AM et al (2006) Efficacy of Milsana (R), a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). BioControl 51:375–392

    Article  Google Scholar 

  • Lahlali R, Peng G, Gossen BD et al (2013) Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology 103:245–254

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee J (2015) Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci Hortic 195:206–215

    Article  CAS  Google Scholar 

  • Li H, Leifert C (1994) Development of resistance in Botryotinia fuckeliana (de Barry) Whetzel against the biological control agent Bacillus subtilis CL27. Z Pflanzenkrankh Pflanzenschutz 101:414–418

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK et al (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lyon GD (2014) Agents that can elicit induced resistance. Wiley, Chichester

    Book  Google Scholar 

  • Madhavi GB, Bhattiprolu SL, Reddy VB (2011) Compatability of biocontrol agent Trichoderma viridewith various pesticides. J Hortic Sci 6:71–73

    Google Scholar 

  • Maisonneuve B, Allen-Aubouard C, Pitrat M (2013) Effect of plant genotype on the efficacy of stimulators of plant defences in two horticultural pathosystems. IOBC/WPRS Bull 89:327–331

    Google Scholar 

  • Maloy OC, Lang KJ (2003) Carl Freiherr von Tubeuf: pioneer in biological control of plant diseases. Annu Rev Phytopathol 41:41–52

    Article  CAS  PubMed  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Jiménez JI (2009) Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl 54:797

    Article  CAS  Google Scholar 

  • Mercier J, Wilson CL (1994) Colonization of apple wounds by naturally occuring microflora and introduced Candida oleophila and their effect on infection by Botrytis cinerea during storage. Biol Control 4:138–144

    Article  Google Scholar 

  • Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741

    Article  CAS  PubMed  Google Scholar 

  • Mokiou S, Magan N (2008) Physiological manipulation and formulation of the biocontrol yeast Pichia anomala for control of Penicillium verrucosumand ochratoxin A contamination of moist grain. Biocontrol Sci Tech 18:1063–1073

    Article  Google Scholar 

  • Morandi MB, Mattos LPV, Santos ER, Bonugli RC (2008) Influence of application time on the establishment, survival, and ability of Clonostachys roseato suppress Botrytis cinerea sporulation on rose debris. Crop Prot 27:77–83

    Article  Google Scholar 

  • Nicot PC, Decognet V, Fruit L, Bardin M, Trottin Y (2002) Combined effect of microclimate and dose of application on the efficacy of biocontrol agents for the protection of pruning wounds on tomatoes against Botrytis cinerea. IOBC/WPRS Bulletin 25:73–76

    Google Scholar 

  • Nicot PC, Bardin M, Alabouvette C, Köhl J, Ruocco M (2011) Potential of biological control based on published research. 1. Protection against plant pathogens of selected crops. In: Nicot PC (ed.) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC/WPRS, pp 1–11

    Google Scholar 

  • Nicot PC, Stewart A, Bardin M, Elad Y (2016) Biological control and biopesticide suppression of Botrytis-incited diseases. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, Switzerland, pp 165–187

    Google Scholar 

  • O’Brien PA (2017) Biological control of plant diseases. Australas Plant Pathol 46:293–304

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Otieno W, Termorshuizen AJ, Jeger M, Otieno CO (2003) Efficacy of soil solarization,Trichoderma harzianum, and coffee pulp amendment against Armillariasp. Crop Prot 22:325–331

    Article  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh J-W (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Pasini C, Daquila F, Curir P, Gullino ML (1997) Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot 16:251–256

    Article  CAS  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Petsikos-Panayotarou N, Schmitt A, Markellou E et al (2002) Management of cucumber powdery mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. Z Pflanzenkrankh Pflanzenschutz 109:478–490

    Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker P (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Porras M, Barrau C, Romero F (2007) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 26:782–787

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, Souza JTD (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Randoux B, Renard D, Nowak E et al (2006) Inhibition of Blumeria graminis f. sp triticigermination and partial enhancement of wheat defenses by Milsana. Phytopathology 96:1278–1286

    Article  CAS  PubMed  Google Scholar 

  • Reuveni M, Agapov V, Reuveni R (1996) Controlling powdery mildew caused by Sphaerotheca fuliginea in cucumber by foliar sprays of phosphate and potassium salts. Crop Prot 15:49–53

    Article  CAS  Google Scholar 

  • Ristaino JB, Perry KB, Lumsen RP (1991) Effect of solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbiotic and teh incidence of southern blight of tomato. Phytopathology 81:1117–1124

    Article  Google Scholar 

  • Rotolo C, De Miccolis Angelini RM, Dongiovanni C, Pollastro S, Fumarola G, Di Carolo M, Perrelli D, Natale P, Faretra F (2017) Use of biological agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Pest Manag Sci 74:715–725

    Article  PubMed  CAS  Google Scholar 

  • Ruocco M, Woo S, Vinale F, Lanzuise S, Lorito M (2011) Identified difficulties and conditions for field success of biocontrol. 2. Technical aspects: factors of efficacy. In: Nicot PC (ed). Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC-WPRS, pp 45–57

    Google Scholar 

  • Salman M, Abuamsha R (2012) Potential for integrated biological and chemical control of damping-off disese caused by Pythium ultimum in tomato. BioControl 57:711–718

    Article  CAS  Google Scholar 

  • Samuels GJ, Hebbar PK (2015) Trichoderma: identification and agricultural applications. APS Press 204 pp.

    Google Scholar 

  • Sarkar S, Narayanan P, Divakaran A, Balamurugan A, Premkumar R (2010) Thein vitroeffect of certain fungicides, insecticides, and biopesticides on mycelia growth of the biocontrol fungus Trichoderma harzianum. Turk J Biol 34:399–403

    Google Scholar 

  • Schoonbeek HJ, Jacquat-Bovet AC, Mascher F, Metraux JP (2007) Oxalate-degrading bacteria can protect Arabidopsis thalianaand crop plants against Botrytis cinerea. Mol Plant-Microbe Interact 20:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillusspecies as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    Article  CAS  Google Scholar 

  • Shlevin E, Gamliel A, Katan J, Shtienberg D (2018) Multi-study analysis of the added benefits of combining soil solarization with fumigants or non-chemical measures. Crop Prot 111:58–65

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    Article  CAS  PubMed  Google Scholar 

  • Siegwart M, Graillot B, Lopez CB et al (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386

    Article  CAS  Google Scholar 

  • Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514

    Article  CAS  PubMed  Google Scholar 

  • Swadling IR, Jeffries P (1998) Antagonistic properties of two bacterial biocontrol agents of grey mould disease. Biocontrol Sci Tech 8:439–448

    Article  Google Scholar 

  • Sztejnberg A, Galper S, Mazar S, Lisker N (1989) Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. J Phytopathol-Phytopathol Z 124:285–295

    Article  CAS  Google Scholar 

  • Tayeh C, Siah A, Randoux B, Halama P, Walters DR, Reignault P (2014) Topical application of inducers for disease control. In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Wiley, Chichester

    Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichodermaspp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Utkhede RS, Bogdanoff C (2003) Influence of lysozyme, yeast, azoxystrobin, and myclobutanil on fungal diseases of cucumbers grown hydroponically. Crop Prot 22:315–320

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA (2002) Chemical and biological treatments for control of gummy stem blight of greenhouse cucumbers. Eur J Plant Pathol 108:443–448

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA (2004) Evaluation of biological and chemical treatments for control of gummy stem blight on cucumber plants grown hydroponically in greenhouses. BioControl 49:109–117

    Article  CAS  Google Scholar 

  • Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Article  Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389

    Article  CAS  Google Scholar 

  • Vos CM, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (−like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Article  Google Scholar 

  • Walters DR, Bennett AE (2014) Microbial induction of resistance to pathogens. Wiley, Chichester

    Book  Google Scholar 

  • Whipps JM (1987) Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol 107:127–142

    Article  Google Scholar 

  • Whipps JM, Gerlagh M (1992) Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res 96:897–907

    Article  Google Scholar 

  • Xu X-M, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Yang LJ, Zeng FS et al (2008) Distribution of baseline sensitivities to natural product physcion among isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Plant Dis 92:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Zablotowicz RM, Press CM, Lyng N, Brown GL, Kloepper JW (1992) Compatibility of plant-growth promoting rhizobacterial strains with agrichemicals applied to seed. Can J Microbiol 38:45–50

    Article  CAS  Google Scholar 

  • Zeng W, Wang D, Kirk W, Hao J (2012) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60:225–232

    Article  Google Scholar 

  • Zhao J, Xue QH, Shen GH, Xue L, Duan JL, Wang DS (2012) Evaluation of Streptomyces spp. for biocontrol of gummy stem blight (Didymella bryoniae) and growth promotion of Cucumis melo L. Biocontrol Sci Tech 22:23–37

    Article  CAS  Google Scholar 

  • Zimand G, Elad Y, Chet I (1996) Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86:1255–1260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardin, M., Pugliese, M. (2020). Biocontrol Agents Against Diseases. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_13

Download citation

Publish with us

Policies and ethics