Skip to main content

Gynecologic/Oncology Surgery

  • Chapter
  • First Online:
Enhanced Recovery After Surgery

Abstract

The enhanced recovery after surgery (ERAS) gynecologic/oncology guidelines have helped integrate existing knowledge into practice and aligned perioperative care within our discipline. Despite this, many clinical departments still struggle with how to initiate their ERAS program, particularly as it relates to translating the guidelines into an actual protocol. With the goal of addressing this gap, recently Nelson and colleagues published a series of practical recommendations including ERAS order sets and instructions for both ERAS team development and ERAS program audit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152(3):292–8.

    PubMed  Google Scholar 

  2. Kalogera E, Bakkum-Gamez JN, Jankowski CJ, Trabuco E, Lovely JK, Dhanorker S, et al. Enhanced recovery in gynecologic surgery. Obstet Gynecol. 2013;122:319–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wijk L, Franzen K, Ljungqvist O, Nilsson K. Implementing a structured Enhanced Recovery After Surgery (ERAS) protocol reduces length of stay after abdominal hysterectomy. Acta Obstet Gynecol Scand. 2014;93:749–56.

    Article  PubMed  Google Scholar 

  4. Nelson G, Kalogera E, Dowdy SC. Enhanced recovery pathways in gynecologic oncology. Gynecol Oncol. 2014;135(3):586–94.

    Article  PubMed  Google Scholar 

  5. Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) society recommendations. Clin Nutr. 2012;31(6):783–800.

    Article  CAS  PubMed  Google Scholar 

  6. Nygren J, Thacker J, Carli F, Fearon KC, Norderval S, Lobo DN, et al. Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS®) society recommendations. Clin Nutr. 2012;31(6):801–16.

    Article  CAS  PubMed  Google Scholar 

  7. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, et al. Guidelines for pre- and intra-operative care in gynecologic/oncology surgery: Enhanced Recovery After Surgery (ERAS®) society recommendations–Part I. Gynecol Oncol. 2016;140(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  9. Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, et al. Guidelines for postoperative care in gynecologic/oncology surgery: Enhanced Recovery After Surgery (ERAS®) society recommendations–Part II. Gynecol Oncol. 2016;140(2):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelson G, Dowdy SC, Lasala J, Mena G, Bakkum-Gamez J, Meyer LA, et al. Enhanced recovery after surgery (ERAS®) in gynecologic oncology – practical considerations for program development. Gynecol Oncol. 2017;147(3):617–20.

    Article  CAS  PubMed  Google Scholar 

  11. Bisch SP, Wells T, Gramlich L, Faris P, Wang X, Tran DT, et al. Enhanced Recovery After Surgery (ERAS) in gynecologic oncology: system-wide implementation and audit leads to improved value and patient outcomes. Gynecol Oncol. 2018;151(1):117–23. pii: S0090-8258(18)31096-5.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer LA, Lasala J, Iniesta MD, Nick AM, Munsell MF, Shi Q, et al. Effect of an enhanced recovery after surgery program on opioid use and patient-reported outcomes. Obstet Gynecol. 2018;132(2):281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cutillo G, Maneschi F, Franchi M, Giannice R, Scambia G, Benedetti-Panici P. Early feeding compared with nasogastric decompression after major oncologic gynecologic surgery: a randomized study. Obstet Gynecol. 1999;93(1):41–5.

    CAS  PubMed  Google Scholar 

  14. Charoenkwan K, Matovinovic E. Early versus delayed oral fluids and food for reducing complications after major abdominal gynaecologic surgery. Charoenkwan K, editor. Cochrane Database Syst Rev. 2014;12:CD004508.

    Google Scholar 

  15. Minig L, Biffi R, Zanagnolo V, Attanasio A, Beltrami C, Bocciolone L, et al. Early oral versus traditional postoperative feeding in gynecologic oncology patients undergoing intestinal resection: a randomized controlled trial. Ann Surg Oncol. 2009;16(6):1660–8.

    Article  CAS  PubMed  Google Scholar 

  16. Minig L, Biffi R, Zanagnolo V, Attanasio A, Beltrami C, Bocciolone L, et al. Reduction of postoperative complication rate with the use of early oral feeding in gynecologic oncologic patients undergoing a major surgery: a randomized controlled trial. Ann Surg Oncol. 2009;16(11):3101–10.

    Article  PubMed  Google Scholar 

  17. Pearl ML, Valea FA, Fischer M, Mahler L, Chalas E. A randomized controlled trial of early postoperative feeding in gynecologic oncology patients undergoing intra-abdominal surgery. Obstet Gynecol. 1998;92(1):94–7.

    Article  CAS  PubMed  Google Scholar 

  18. Schilder JM, Hurteau JA, Look KY, Moore DH, Raff G, Stehman FB, et al. A prospective controlled trial of early postoperative oral intake following major abdominal gynecologic surgery. Gynecol Oncol. 1997;67(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  19. Wischmeyer PE, Carli F, Evans DC, Guilbert S, Kozar R, Pryor A, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on nutrition screening and therapy within a surgical enhanced recovery pathway. Anesth Analg. 2018;126(6):1883–95.

    Article  PubMed  Google Scholar 

  20. Gustafsson UO, Oppelstrup H, Thorell A, Nygren J, Ljungqvist O. Adherence to the ERAS protocol is associated with 5-year survival after colorectal cancer surgery: a retrospective cohort study. World J Surg. 2016;40(7):1741–7.

    Article  PubMed  Google Scholar 

  21. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg. 2009;13(3):569–75.

    Article  PubMed  Google Scholar 

  22. Scott MJ, Fawcett WJ. Oral carbohydrate preload drink for major surgery – the first steps from famine to feast. Anaesthesia. 2014;69(12):1308–13.

    Article  CAS  PubMed  Google Scholar 

  23. Kratzing C. Pre-operative nutrition and carbohydrate loading. Proc Nutr Soc. 2011;70(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  24. Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011;212(3):385–99, 399.e1.

    Article  PubMed  Google Scholar 

  25. Celik JB, Gezginç K, Ozçelik K, Celik C. The role of immunonutrition in gynecologic oncologic surgery. Eur J Gynaecol Oncol. 2009;30(4):418–21.

    CAS  PubMed  Google Scholar 

  26. Moya P, Soriano-Irigaray L, Ramirez JM, Garcea A, Blasco O, Blanco FJ, et al. Perioperative standard oral nutrition supplements versus immunonutrition in patients undergoing colorectal resection in an Enhanced Recovery (ERAS) protocol: a multicenter randomized clinical trial (SONVI study). Medicine (Baltimore). 2016;95(21):e3704.

    Article  CAS  Google Scholar 

  27. Yeung SE, Hilkewich L, Gillis C, Heine JA, Fenton TR. Protein intakes are associated with reduced length of stay: a comparison between Enhanced Recovery After Surgery (ERAS) and conventional care after elective colorectal surgery. Am J Clin Nutr. 2017;106(1):44–51.

    CAS  PubMed  Google Scholar 

  28. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.

    Article  CAS  PubMed  Google Scholar 

  29. Pruemer J. Prevalence, causes, and impact of cancer-associated thrombosis. Am J Health Syst Pharm. 2005;62:S4–6.

    Article  CAS  PubMed  Google Scholar 

  30. Peedicayil A, Weaver A, Li X, Carey E, Cliby W, Mariani A. Incidence and timing of venous thromboembolism after surgery for gynecological cancer. Gynecol Oncol. 2011;121:64–9.

    Article  PubMed  Google Scholar 

  31. Greco PS, Bazzi AA, McLean K, Reynolds RK, Spencer RJ, Johnston CM, et al. Incidence and timing of thromboembolic events in patients with ovarian cancer undergoing neoadjuvant chemotherapy. Obstet Gynecol. 2017;129:979–85.

    Article  CAS  PubMed  Google Scholar 

  32. Mokri B, Mariani A, Heit JA, Weaver AL, McGree ME, Martin JR, et al. Incidence and predictors of venous thromboembolism after debulking surgery for epithelial ovarian cancer. Int J Gynecol Cancer. 2013;23:1684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pant A, Liu D, Schink J, Lurain J. Venous thromboembolism in advanced ovarian cancer patients undergoing frontline adjuvant chemotherapy. Int J Gynecol Cancer. 2014;24:997–1002.

    Article  PubMed  Google Scholar 

  34. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA, et al. Prevention of VTE in nonorthopedic surgical PatientsPrevention of VTE in Nonorthopedic Surgery PatientsAntithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest J. 2012;141:e227S–77S.

    Article  CAS  Google Scholar 

  35. Lyman GH, Bohlke K, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update 2014. J Clin Oncol. 2015;33:654–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caprini JA. Risk assessment as a guide for the prevention of the many faces of venous thromboembolism. Am J Surg. 2010;199:S3–S10.

    Article  PubMed  Google Scholar 

  37. Bergqvist D, Agnelli G, Cohen AT, Eldor A, Nilsson PE, Le Moigne-Amrani A, et al. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N Engl J Med. 2002;346:975–80.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar S, Al-Wahab Z, Sarangi S, Woelk J, Morris R, Munkarah A, et al. Risk of postoperative venous thromboembolism after minimally invasive surgery for endometrial and cervical cancer is low: a multi-institutional study. Gynecol Oncol. 2013;130:207–12.

    Article  CAS  PubMed  Google Scholar 

  39. Agnelli G, Gussoni G, Bianchini C, Verso M, Mandalà M, Cavanna L, et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: a randomised, placebo-controlled, double-blind study. Lancet Oncol. 2009;10:943–9.

    Article  CAS  PubMed  Google Scholar 

  40. Verso M, Agnelli G, Barni S, Gasparini G, LaBianca R. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern Emerg Med. 2012;7:291–2.

    Article  PubMed  Google Scholar 

  41. Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111:4902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agnelli G, George DJ, Kakkar AK, Fisher W, Lassen MR, Mismetti P, et al. Semuloparin for Thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med. 2012;366:601–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nichols R, Condon R. Preoperative preparation of the colon. Surg Gynecol Obstet. 1971;132:323–37.

    CAS  PubMed  Google Scholar 

  44. Kiran RP, Murray ACA, Chiuzan C, Estrada D, Forde K. Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg. 2015;262:416–25.

    Article  PubMed  Google Scholar 

  45. Hendren S, Fritze D, Banerjee M, Kubus J, Cleary RK, Englesbe MJ, Campbell DAJ. Antibiotic choice is independently associated with risk of surgical site infection after colectomy: a population-based cohort study. Ann Surg. 2013;257:469–75.

    Article  PubMed  Google Scholar 

  46. Cannon JA, Altom LK, Deierhoi RJ, Morris M, Richman JS, Vick CC, Itani KMF, Hawn MT. Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections. Dis Colon Rectum. 2012;55:1160–6.

    Article  PubMed  Google Scholar 

  47. Scarborough JE, Mantyh CR, Sun Z, Migaly J. Combined mechanical and oral antibiotic bowel preparation reduces incisional surgical site infection and anastomotic leak rates after elective colorectal resection: an analysis of colectomy-targeted ACS NSQIP. Ann Surg. 2015;262:331–7.

    Article  PubMed  Google Scholar 

  48. Toneva GD, Deierhoi RJ, Morris M, Richman J, Cannon JA, Altom LK, Hawn MT. Oral antibiotic bowel preparation reduces length of stay and readmissions after colorectal surgery. J Am Coll Surg. 2013;216:756–62.

    Article  PubMed  Google Scholar 

  49. Reumkens A, Masclee AA, Winkens B, van Deursen CT, Sanduleanu S, Bakker CM. Prevalence of hypokalemia before and after bowel preparation for colonoscopy in high-risk patients. Gastrointest Endosc. 2017;86:673–9.

    Article  PubMed  Google Scholar 

  50. Arnold A, Aitchison LP, Abbott J. Preoperative mechanical bowel preparation for abdominal, laparoscopic, and vaginal surgery: a systematic review. J Minim Invasive Gynecol. 2015;22:737–52.

    Article  PubMed  Google Scholar 

  51. Klinger AL, Green H, Monlezun DJ, Beck D, Kann B, Vargas HD, Whitlow C, Margolin D. The role of bowel preparation in colorectal surgery: results of the 2012–2015 ACS-NSQIP data. Ann Surgery. 2019;269(4):671–7.

    Article  Google Scholar 

  52. Kumar AS, Kelleher DC, Sigle GW. Bowel preparation before elective surgery. Clin Colon Rectal Surg. 2013;26:146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bucher P, Mermillod B, Gervaz P, Morel P. Mechanical bowel preparation for elective colorectal surgery: a meta-analysis. Arch Surg. 2004;139:1359–64.

    Article  PubMed  Google Scholar 

  54. Kalogera E, Nitschmann CC, Dowdy SC, Cliby WA, Langstraat CL. A prospective algorithm to reduce anastomotic leaks after rectosigmoid resection for gynecologic malignancies. Gynecol Oncol. 2017;144:343–7.

    Article  CAS  PubMed  Google Scholar 

  55. Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the surgical care and outcomes assessment program. Ann Surg. 2013;257:8–14.

    Article  PubMed  Google Scholar 

  56. Gandhi GY, Nuttall GA, Abel MD, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146:233–43.

    Article  PubMed  Google Scholar 

  57. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358:876–80.

    Article  CAS  PubMed  Google Scholar 

  58. Kurz A, Sessler DI, Lenhardt R. Perioperative Normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334:1209–16.

    Article  CAS  PubMed  Google Scholar 

  59. Stulberg JJ, Delaney CP, Neuhauser DV, Aron DC, Fu P, Koroukian SM. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA. 2010;303:2479–85.

    Article  CAS  PubMed  Google Scholar 

  60. Hawn MT, Houston TK, Campagna EJ, Graham LA, Singh J, Bishop M, Henderson WG. The attributable risk of smoking on surgical complications. Ann Surg. 2011;254:914–20.

    Article  PubMed  Google Scholar 

  61. Ingraham AM, Cohen ME, Bilimoria KY, Dimick JB, Richards KE, Raval MV, et al. Association of Surgical Care Improvement Project Infection-Related Process Measure Compliance with risk-adjusted outcomes: implications for quality measurement. J Am Coll Surg. 2010;211:705–14.

    Article  PubMed  Google Scholar 

  62. Darouiche RO, Wall MJ, Itani KMF, Otterson MF, Webb AL, Carrick MM, et al. Chlorhexidine–alcohol versus povidone–iodine for surgical-site antisepsis. N Engl J Med. 2010;362:18–26.

    Article  CAS  PubMed  Google Scholar 

  63. Cima R, Dankbar E, Lovely J, Pendlimari R, Aronhalt K, Nehring S, et al. Colorectal surgery surgical site infection reduction program: a National Surgical Quality Improvement Program–Driven Multidisciplinary Single-Institution Experience. J Am Coll Surg. 2013;216:23–33.

    Article  PubMed  Google Scholar 

  64. Johnson MP, Kim SJ, Langstraat CL, Jain S, Habermann EB, Wentink JE, et al. Using bundled interventions to reduce surgical site infection after major gynecologic cancer surgery. Obstet Gynecol. 2016;127:1135–44.

    Article  PubMed  Google Scholar 

  65. Kalogera E, Bakkum-Gamez JN, Weaver AL, Moriarty JP, Borah BJ, Langstraat CL, et al. Abdominal incision injection of liposomal bupivacaine and opioid use after laparotomy for gynecologic malignancies. Obstet Gynecol. 2016;128:1009–17.

    Article  CAS  PubMed  Google Scholar 

  66. Wolff BG, Weese JL, Ludwig KA, Delaney CP, Stamos MJ, Michelassi F, Du W, Techner L. Postoperative ileus-related morbidity profile in patients treated with Alvimopan after bowel resection. J Am Coll Surg. 2007;204:609–16.

    Article  PubMed  Google Scholar 

  67. Lee CT, Chang SS, Kamat AM, Amiel G, Beard TL, Fergany A, Karnes RJ, Kurz A, Menon V, Sexton WJ, Slaton JW, Svatek RS, Wilson SS, Techner L, Bihrle R, Steinberg GD, Koch M. Alvimopan accelerates gastrointestinal recovery after radical cystectomy: a multicenter randomized placebo-controlled trial. Eur Urol. 2014;66:265–72.

    Article  CAS  PubMed  Google Scholar 

  68. Bakkum-Gamez JN, Langstraat CL, Lemens MA, Weaver AL, McGree M, Mariani A, Gostout BS, Wilson TO, Cliby BA, Dowdy SC. Accelerating gastrointestinal recovery in women undergoing ovarian cancer debulking: a randomized, double-blind, placebo-controlled trial. Gynecol Oncol. 2016;141:16.

    Article  Google Scholar 

  69. Ong CK, Seymour RA, Lirk P, Merry AF. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain. Anesth Analg. 2010;110(4):1170–9.

    CAS  PubMed  Google Scholar 

  70. Alayed N, Alghanaim N, Tan X, Tulandi T. Preemptive use of gabapentin in abdominal hysterectomy: a systematic review and meta-analysis. Obstet Gynecol. 2014;123(6):1221–9.

    Article  CAS  PubMed  Google Scholar 

  71. Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LH, Hahnenkamp K, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;6:CD009642.

    PubMed  Google Scholar 

  72. Sanchez Munoz MC, De Kock M, Forget P. What is the place of clonidine in anesthesia? Systematic review and meta-analyses of randomized controlled trials. J Clin Anesth. 2017;38:140–53.

    Article  CAS  PubMed  Google Scholar 

  73. De Oliveira GS Jr, Castro-Alves LJ, Khan JH, McCarthy RJ. Perioperative systemic magnesium to minimize postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(1):178–90.

    Article  CAS  PubMed  Google Scholar 

  74. Jokela RM, Ahonen JV, Tallgren MK, Marjakangas PC, Korttila KT. The effective analgesic dose of dexamethasone after laparoscopic hysterectomy. Anesth Analg. 2009;109(2):607–15.

    Article  CAS  PubMed  Google Scholar 

  75. Jørgensen H, Fomsgaard JS, Dirks J, Wetterslev J, Andreasson B, Dahl JB. Effect of peri- and postoperative epidural anaesthesia on pain and gastrointestinal function after abdominal hysterectomy. Br J Anaesth. 2001;87(4):577–83.

    Article  PubMed  Google Scholar 

  76. Ferguson SE, Malhotra T, Seshan VE, Levine DA, Sonoda Y, Chi DS, et al. A prospective randomized trial comparing patient-controlled epidural analgesia to patient-controlled intravenous analgesia on postoperative pain control and recovery after major open gynecologic cancer surgery. Gynecol Oncol. 2009;114(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ready LB. Acute pain: lessons learned from 25,000 patients. Reg Anesth Pain Med. 1999;24(6):499–505.

    CAS  PubMed  Google Scholar 

  78. Hübner M, Blanc C, Roulin D, Winiker M, Gander S, Demartines N. Randomized clinical trial on epidural versus patient -controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway. Ann Surg. 2015;261(4):648–53.

    Article  PubMed  Google Scholar 

  79. Gasanova I, Alexander J, Ogunnaike B, Hamid C, Rogers D, Minhajuddin A, et al. Transversus abdominis plane block versus surgical site infiltration for pain management after open total abdominal hysterectomy. Anesth Analg. 2015;121(5):1383–8.

    Article  PubMed  Google Scholar 

  80. Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  81. Hohlrieder M, Tiefenthaler W, Klaus H, Gabl M, Kavakebi P, Keller C, et al. Effect of total intravenous anaesthesia and balanced anaesthesia on the frequency of coughing during emergence from the anaesthesia. Br J Anaesth. 2007;99(4):587–91.

    Article  CAS  PubMed  Google Scholar 

  82. Ledowski T, Paech MJ, Patel B, Schug SA. Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg. 2006;102(5):1427–30.

    Article  CAS  PubMed  Google Scholar 

  83. Ledowski T, Bein B, Hanss R, Paris A, Fudickar W, Scholz J, et al. Neuroendocrine stress response and heart rate variability: a comparison of total intravenous versus balanced anesthesia. Anesth Analg. 2005;101(6):1700–5.

    Article  CAS  PubMed  Google Scholar 

  84. Kotani N, Hashimoto H, Sessler DI, Yasuda T, Ebina T, Muraoka M, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia. Anesth Analg. 1999;89(5):1250–6.

    Article  CAS  PubMed  Google Scholar 

  85. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93(5):1345–9.

    Article  CAS  PubMed  Google Scholar 

  86. Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101(5):1066–76.

    Article  CAS  PubMed  Google Scholar 

  87. Jalonen J, Hynynen M, Kuitunen A, Heikkila H, Perttila J, Salmenpera M, et al. Dexmedetomidine as an anesthetic adjunct in coronary artery bypass grafting. Anesthesiology. 1997;86(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  88. McCutcheon CA, Orme RM, Scott DA, Davies MJ, McGlade DP. A comparison of dexmedetomidine versus conventional therapy for sedation and hemodynamic control during carotid endarterectomy performed under regional anesthesia. Anesth Analg. 2006;102(3):668–75.

    Article  CAS  PubMed  Google Scholar 

  89. Aho M, Erkola O, Kallio A, Scheinin H, Korttila K. Dexmedetomidine infusion for maintenance of anesthesia in patients undergoing abdominal hysterectomy. Anesth Analg. 1992;75(6):940–6.

    CAS  PubMed  Google Scholar 

  90. Alhashemi JA, Kaki AM. Dexmedetomidine in combination with morphine PCA provides superior analgesia for shockwave lithotripsy. Can J Anaesth. 2004;51(4):342–7.

    Article  PubMed  Google Scholar 

  91. Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg. 2004;98(1):153–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sturaitis MK, Kroin JS, Swamidoss CP, Cerullo LJ, Tuman KJ. Effects of intraoperative Dexmedetomidine infusion on hemodynamic stability during brain tumor resection. Anesthesiology. 2002;97:A310.

    Article  Google Scholar 

  93. Unlugenc H, Gunduz M, Guler T, Yagmur O, Isik G. The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol. 2005;22(5):386–91.

    Article  CAS  PubMed  Google Scholar 

  94. Wahlander S, Frumento RJ, Wagener G, Saldana-Ferretti B, Joshi RR, Playford HR, et al. A prospective, double-blind, randomized, placebo-controlled study of dexmedetomidine as an adjunct to epidural analgesia after thoracic surgery. J Cardiothorac Vasc Anesth. 2005;19(5):630–5.

    Article  CAS  PubMed  Google Scholar 

  95. Aantaa R, Jaakola ML, Kallio A, Kanto J. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86(5):1055–60.

    Article  CAS  PubMed  Google Scholar 

  96. Fragen RJ, Fitzgerald PC. Effect of dexmedetomidine on the minimum alveolar concentration (MAC) of sevoflurane in adults age 55 to 70 years. J Clin Anesth. 1999;11(6):466–70.

    Article  CAS  PubMed  Google Scholar 

  97. Ramsay MA, Luterman DL. Dexmedetomidine as a total intravenous anesthetic agent. Anesthesiology. 2004;101(3):787–90.

    Article  PubMed  Google Scholar 

  98. Reddi D. Preventing chronic postoperative pain. Anaesthesia. 2016;71(Suppl 1):64–71.

    Article  PubMed  Google Scholar 

  99. Groudine SB, Fisher HA, Kaufman RP Jr, Patel MK, Wilkins LJ, Mehta SA, et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86(2):235–9.

    CAS  PubMed  Google Scholar 

  100. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8; discussion 5–6.

    Article  CAS  PubMed  Google Scholar 

  101. Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98(4):1050–5.

    Article  CAS  PubMed  Google Scholar 

  102. Lauwick S, Kim DJ, Michelagnoli G, Mistraletti G, Feldman L, Fried G, et al. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55(11):754–60.

    Article  PubMed  Google Scholar 

  103. Saadawy IM, Kaki AM, Abd El Latif AA, Abd-Elmaksoud AM, Tolba OM. Lidocaine vs. magnesium: effect on analgesia after a laparoscopic cholecystectomy. Acta Anaesthesiol Scand. 2010;54(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  104. Vigneault L, Turgeon AF, Cote D, Lauzier F, Zarychanski R, Moore L, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials. Can J Anaesth. 2011;58(1):22–37.

    Article  PubMed  Google Scholar 

  105. Wu CT, Borel CO, Lee MS, Yu JC, Liou HS, Yi HD, et al. The interaction effect of perioperative cotreatment with dextromethorphan and intravenous lidocaine on pain relief and recovery of bowel function after laparoscopic cholecystectomy. Anesth Analg. 2005;100(2):448–53.

    Article  CAS  PubMed  Google Scholar 

  106. Bakan M, Umutoglu T, Topuz U, Uysal H, Bayram M, Kadioglu H, et al. Opioid-free total intravenous anesthesia with propofol, dexmedetomidine and lidocaine infusions for laparoscopic cholecystectomy: a prospective, randomized, double-blinded study. Braz J Anesthesiol. 2015;65(3):191–9.

    Article  PubMed  Google Scholar 

  107. Viviand X, Leone M. Induction and maintenance of intravenous anaesthesia using target-controlled infusion systems. Best Pract Res Clin Anaes. 2001;15(1):19–33.

    Article  CAS  Google Scholar 

  108. Egan TD. Target-controlled drug delivery: progress toward an intravenous “vaporizer” and automated anesthetic administration. Anesthesiology. 2003;99(5):1214–9.

    Article  PubMed  Google Scholar 

  109. Dryden PE. Target-controlled infusions: paths to approval. Anesth Analg. 2016;122(1):86–9.

    Article  CAS  PubMed  Google Scholar 

  110. Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM. Target-controlled infusion: a mature technology. Anesth Analg. 2016;122(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  111. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  112. Schneider G, Gelb AW, Schmeller B, Tschakert R, Kochs E. Detection of awareness in surgical patients with EEG-based indices–bispectral index and patient state index. Br J Anaesth. 2003;91(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  113. Nordstrom O, Engstrom AM, Persson S, Sandin R. Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand. 1997;41(8):978–84.

    Article  CAS  PubMed  Google Scholar 

  114. Thom O, Taylor DM, Wolfe RE, Myles P, Krum H, Wolfe R. Pilot study of the prevalence, outcomes and detection of occult hypoperfusion in trauma patients. Emerg Med J. 2010;27(6):470–2.

    Article  PubMed  Google Scholar 

  115. Davies SJ, Wilson RJ. Preoperative optimization of the high-risk surgical patient. Br J Anaesth. 2004;93(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  116. Bennett-Guerrero E, Welsby I, Dunn TJ, Young LR, Wahl TA, Diers TL, et al. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth Analg. 1999;89(2):514–9.

    CAS  PubMed  Google Scholar 

  117. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, et al. Identification and characterization of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM. Mortality and utilisation of critical care resources amongst high risk surgical patients in a large NHS trust. Anaesthesia. 2008;63(7):695–700.

    Article  CAS  PubMed  Google Scholar 

  119. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6.

    Article  PubMed  Google Scholar 

  120. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329(7460):258.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100(4):1093–106.

    Article  PubMed  Google Scholar 

  122. Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  123. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.

    Article  PubMed  Google Scholar 

  124. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15(3):R154.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Giglio MT, Marucci M, Testini M, Brienza N. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009;103(5):637–46.

    Article  CAS  PubMed  Google Scholar 

  126. Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37(6):2079–90.

    Article  PubMed  Google Scholar 

  127. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995;333(16):1025–32.

    Article  CAS  PubMed  Google Scholar 

  128. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med. 1996;24(3):517–24.

    Article  CAS  PubMed  Google Scholar 

  129. Ziegler DW, Wright JG, Choban PS, Flancbaum L. A prospective randomized trial of preoperative “optimization” of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery. 1997;122(3):584–92.

    Article  CAS  PubMed  Google Scholar 

  130. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348(1):5–14.

    Article  PubMed  Google Scholar 

  131. Kreimeier U. Pathophysiology of fluid imbalance. Crit Care. 2000;4(Suppl 2):S3–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89(4):622–32.

    Article  CAS  PubMed  Google Scholar 

  133. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

    Article  PubMed  Google Scholar 

  134. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3):R118.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Michard F. The burden of high-risk surgery and the potential benefit of goal-directed strategies. Crit Care. 2011;15:447.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Miralpeix E, Nick A, Meyer L, Cata J, Lasala J, Mena G, et al. A call for new standard of care in perioperative gynecologic oncology practice: impact of enhanced recovery after surgery (ERAS) programs. Gynecol Oncol. 2016;141(2):371–8.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Thiele R, Raghunathan K, Brudney C, Lobo D, Martin D, Senagore A, et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med (Lond). 2016;5:24.

    Article  Google Scholar 

  139. Srinivasa S, Taylor MH, Singh PP, Yu TC, Soop M, Hill AG. Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg. 2013;100(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  140. Brandstrup B, Svendsen PE, Rasmussen M, Belhage B, Rodt SA, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth. 2012;109:191–9.

    Article  CAS  PubMed  Google Scholar 

  141. Phan TD, D’Souza B, Rattray MJ, Johnston MJ, Cowie BS. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care. 2014;42(6):752–60.

    Article  CAS  PubMed  Google Scholar 

  142. Lasala J, Mena G, Iniesta M, Rodriguez-Restrepo A, Meyer L, Salvo G, et al. Impact of an Enhanced Recovery After Surgery (ERAS) Program on postoperative renal function. (Poster presented at the 5th ERAS World Congress, Lyon, France, May 2017).

    Google Scholar 

  143. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378(24):2263–74.

    Article  PubMed  Google Scholar 

  144. Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to Enhanced Recovery After Surgery (ERAS). Can J Anaesth. 2015;62(2):158–68.

    Article  PubMed  Google Scholar 

  145. Marcotte JH, Patel K, Desai R, Gaughan JP, Rattigan D, Cahill KW, et al. Acute kidney injury following implementation of an enhanced recovery after surgery (ERAS) protocol in colorectal surgery. Int J Color Dis. 2018;33(9):1259–67.

    Article  Google Scholar 

  146. Gao R, Qin H. Fluid balance in major abdominal surgery deserves more exploration. Hepatobiliary Surg Nutr. 2018;7(3):189–91.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Thompson KM, Oldenburg WA, Deschamps C, Rupp WC, Smith CD. Chasing zero: the drive to eliminate surgical site infections. Ann Surg. 2011;254(3):430–6.

    Article  PubMed  Google Scholar 

  148. Tran CW, McGree ME, Weaver AL, Martin JR, Lemens MA, Cliby WA, et al. Surgical site infection after primary surgery for epithelial ovarian cancer: predictors and impact on survival. Gynecol Oncol. 2015;136(2):278–84.

    Article  PubMed  Google Scholar 

  149. Lippitt MH, Fairbairn MG, Matsuno R, Stone RL, Tanner EJ 3rd, Wick EC, et al. Outcomes associated with a five-point surgical site infection prevention bundle in women undergoing surgery for ovarian cancer. Obstet Gynecol. 2017;130:756–64.

    Article  PubMed  Google Scholar 

  150. Schiavone MB, Moukarzel L, Leong K, Zhou QC, Afonso AM, Iasonos A, et al. Surgical site infection reduction bundle in patients with gynecologic cancer undergoing colon surgery. Gynecol Oncol. 2017;147:115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bakkum-Gamez JN, Dowdy SC, Borah BJ, Haas LR, Mariani A, Martin JR, et al. Predictors and costs of surgical site infections in patients with endometrial cancer. Gynecol Oncol. 2013;130(1):100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Feldman LS, Lee L, Fiore J Jr. What outcomes are important in the assessment of Enhanced Recovery After Surgery (ERAS) pathways? Can J Anaesth. 2015;62(2):120–30.

    Article  PubMed  Google Scholar 

  153. U.S. Department of Health and Human Services FDA Center for Drug Evaluation and Research, et al. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79.

    Article  PubMed Central  Google Scholar 

  154. Abola RE, Bennett-Guerrero E, Kent ML, Feldman LS, Fiore JF Jr, Shaw AD, et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on patient-reported outcomes in an enhanced recovery pathway. Anesth Analg. 2018;126(6):1874–82.

    Article  PubMed  Google Scholar 

  155. Stark PA, Myles PS, Burke JA. Development and psychometric evaluation of a postoperative quality of recovery score: the QoR-15. Anesthesiology. 2013;118(6):1332–40.

    Article  PubMed  Google Scholar 

  156. Ustün TB, Chatterji S, Kostanjsek N, Rehm J, Kennedy C, Epping-Jordan J, et al. Developing the World Health Organization disability assessment schedule 2.0. Bull World Health Organ. 2010;88(11):815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Jones RS, Stukenborg GJ. Patient-reported outcomes measurement information system (PROMIS) use in surgical care: a scoping study. J Am Coll Surg. 2017;224(3):245–254.e1.

    Article  PubMed  Google Scholar 

  158. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  159. Kehlet H, Nielsen HJ. Impact of laparoscopic surgery on stress responses, immunofunction, and risk of infectious complications. New Horiz. 1998;6(2 Suppl):S80–8.

    CAS  PubMed  Google Scholar 

  160. Holub Z. Impact of laparoscopic surgery on immune function. Clin Exp Obstet Gynecol. 2002;29(2):77–81.

    CAS  PubMed  Google Scholar 

  161. Prete A, Yan Q, Al-Tarrah K, Akturk HK, Prokop LJ, Alahdab F, et al. The cortisol stress response induced by surgery: a systematic review and meta-analysis. Clin Endocrinol. 2018;89:554.

    Article  Google Scholar 

  162. Chapman JS, Roddy E, Ueda S, Brooks R, Chen LL, Chen LM. Enhanced recovery pathways for improving outcomes after minimally invasive gynecologic oncology surgery. Obstet Gynecol. 2016;128(1):138–44.

    Article  PubMed  Google Scholar 

  163. Modesitt SC, Sarosiek BM, Trowbridge ER, Redick DL, Shah PM, Thiele RH, et al. Enhanced recovery implementation in major gynecologic surgeries: effect of care standardization. Obstet Gynecol. 2016;128(3):457–66.

    Article  PubMed  Google Scholar 

  164. Ramirez PT, Frumovitz M, Pareja R, Lopez A, Vieira M, Ribeiro R, et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med. 2018;379(20):1895–904.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nelson, G. et al. (2020). Gynecologic/Oncology Surgery. In: Ljungqvist, O., Francis, N., Urman, R. (eds) Enhanced Recovery After Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-33443-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33443-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33442-0

  • Online ISBN: 978-3-030-33443-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics