Skip to main content

Soil Moisture and Permittivity Estimation

  • Chapter
  • First Online:
Signals in the Soil

Abstract

The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Soil moisture-permittivity relation is proved to work in coarse textured soils and fine textured soil, however, some errors were found in the relationship and this relation is weak in mineral soils [21, 54].

  2. 2.

    Higher matric potential values equal low soil moisture and, similarly, near saturation point is denoted by zero matric potential 1 CB = 1 kPa.

References

  1. Abrudan TE, Kypris O, Trigoni N, Markham A (2016) Impact of rocks and minerals on underground magneto-inductive communication and localization. IEEE Access 4:3999–4010. https://doi.org/10.1109/ACCESS.2016.2597641

    Google Scholar 

  2. Akyildiz IF, Stuntebeck EP (2006) Wireless underground sensor networks: research challenges. Ad Hoc Netw J 4(6):669–686

    Google Scholar 

  3. Bobrov P, Repin A, Rodionova O (2015) Wideband frequency domain method of soil dielectric property measurements. IEEE Trans Geosci Remote Sens 53(5):2366–2372. https://doi.org/10.1109/TGRS.2014.2359092

    Google Scholar 

  4. Bogena HR, Herbst M, Huisman JA, Rosenbaum U, Weuthen A, Vereecken H (2010) Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J 9(4):1002–1013

    Google Scholar 

  5. Comite D, Galli A, Lauro SE, Mattei E, Pettinelli E (2016) Analysis of GPR early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys. IEEE J Select Top Appl Earth Obs Remote Sens 9(1):178–187. https://doi.org/10.1109/JSTARS.2015.2466174

    Google Scholar 

  6. Curtis JO (2001) A durable laboratory apparatus for the measurement of soil dielectric properties. IEEE Trans Instrum Meas 50(5):1364–1369. https://doi.org/10.1109/19.963211

    Google Scholar 

  7. Dobson M, etal (1985) Microwave dielectric behavior of wet soil—Part II: dielectric mixing models. IEEE Trans Geosci Remote Sens GE-23(1):35–46. https://doi.org/10.1109/TGRS.1985.289498

  8. Dong X, Vuran MC, Irmak S (2012) Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks (Elsevier) 11(7):1975–1987

    Google Scholar 

  9. Ettus Research Website (2016). http://www.ettus.com

  10. GNU Radio Website (2020) http://www.gnuradio.org

  11. Guo H, Sun Z (2014) Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs. IEEE Trans Wireless Commun 13(4):2258–2269. https://doi.org/10.1109/TWC.2013.031314.130835

    Google Scholar 

  12. Hipp JE (1974) Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture. Proc IEEE 62(1):98–103. https://doi.org/10.1109/PROC.1974.9389

    Google Scholar 

  13. Hislop G (2015) Permittivity estimation using coupling of commercial ground penetrating radars. IEEE Trans Geosci Remote Sens 53(8):4157–4164. https://doi.org/10.1109/TGRS.2015.2392110

    Google Scholar 

  14. Irmak S, Haman D (2001) Performance of the watermark. Granular matrix sensor in sandy soils. Appl Eng Agric17(6):787

    Google Scholar 

  15. Irmak S, Irmak A (2005) Performance of frequency-domain reflectometer, capacitance, and pseudo-transit time-based soil water content probes in four coarse-textured soils. Appl Eng Agric 21(6):999–1008

    MathSciNet  Google Scholar 

  16. Irmak S, Payero JO, Eisenhauer DE, Kranz WL, Martin D, Zoubek GL, Rees JM, VanDeWalle B, Christiansen AP, Leininger D (2006) Ec06-783 watermark granular matrix sensor to measure soil matric potential for irrigation management

    Google Scholar 

  17. Irmak S, etal (2012) Large scale on-farm implementation of soil moisture-based irrigation management strategies for increasing maize water productivity. Trans ASABE 55(3):881–894

    Google Scholar 

  18. Jonard F, Weihermüller L, Schwank M, Jadoon KZ, Vereecken H, Lambot S (2015) Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE Trans Geosci Remote Sens 53(6):3095–3109. https://doi.org/10.1109/TGRS.2014.2368831

    Google Scholar 

  19. Josephson B, Blomquist A (1958) The influence of moisture in the ground, temperature and terrain on ground wave propagation in the VHF-band. IRE Trans Anten Propag 6(2):169–172. https://doi.org/10.1109/TAP.1958.1144574

    Google Scholar 

  20. Kim S, Ouellette JD, van Zyl JJ, Johnson JT (2016) Detection of inland open water surfaces using dual polarization l-band radar for the soil moisture active passive mission. IEEE Trans Geosci Remote Sens 54(6):3388–3399. https://doi.org/10.1109/TGRS.2016.2517010

    Google Scholar 

  21. Ledieu J, Ridder PD, Clerck PD, Dautrebande S (1986) A method of measuring soil moisture by time-domain reflectometry. J Hydrol 88(3):319–328. http://dx.doi.org/10.1016/0022-1694(86)90097-1

    Google Scholar 

  22. Markham A, Trigoni N (2012) Magneto-inductive networked rescue system (miners): taking sensor networks underground. In: Proceedings of the 11th ICPS, ACM, IPSN ’12, pp 317–328. https://doi.org/10.1145/2185677.2185746

  23. MATLAB (2020) http://wwwmatlab.com

  24. Nassar EM, Lee R, Young JD (1999) A probe antenna for in situ measurement of the complex dielectric constant of materials. IEEE Trans Anten Propag 47(6):1085–1093. https://doi.org/10.1109/8.777136

    Google Scholar 

  25. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Measurement 19(4):377–382. https://doi.org/10.1109/TIM.1970.4313932

    Google Scholar 

  26. Peplinski NR, Ulaby FT, Dobson MC (1995) Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans Geosci Remote Sens 33(3):803–807

    Google Scholar 

  27. Pettinelli E, Matteo AD, Mattei E, Crocco L, Soldovieri F, Redman JD, Annan AP (2009) GPR response from buried pipes: measurement on field site and tomographic reconstructions. IEEE Trans Geosci Remote Sens 47(8):2639–2645. https://doi.org/10.1109/TGRS.2009.2018301

    Google Scholar 

  28. Salam A (2018) Pulses in the sand: long range and high data rate communication techniques for next generation wireless underground networks. ETD collection for University of Nebraska - Lincoln (AAI10826112). http://digitalcommons.unl.edu/dissertations/AAI10826112

  29. Salam A (2019) Design of subsurface phased array antennas for digital agriculture applications. In: Proceedings of the 2019 IEEE International Symposium on Phased Array Systems and Technology (IEEE Array 2019), Waltham, MA

    Google Scholar 

  30. Salam A (2019) A path loss model for through the soil wireless communications in digital agriculture. In: 2019 IEEE International Symposium on Antennas and Propagation. IEEE, New York, pp 1–2

    Google Scholar 

  31. Salam A (2019) Sensor-free underground soil sensing. In: ASA, CSSA and SSSA International Annual Meetings (2019), ASA-CSSA-SSSA

    Google Scholar 

  32. Salam A (2019) Subsurface MIMO: a beamforming design in internet of underground things for digital agriculture applications. J Sens Actuat Netw 8(3). https://doi.org/10.3390/jsan8030041. https://www.mdpi.com/2224-2708/8/3/41

  33. Salam A (2019) Underground environment aware MIMO design using transmit and receive beamforming in internet of underground things. Springer International Publishing, Cham, pp 1–15

    Google Scholar 

  34. Salam A (2019) An underground radio wave propagation prediction model for digital agriculture. Information 10(4):147

    Google Scholar 

  35. Salam A (2020) Internet of Things for sustainability: perspectives in privacy, cybersecurity, and future trends. Springer International Publishing, Cham, pp 299–327. https://doi.org/10.1007/978-3-030-35291-2_10

    Google Scholar 

  36. Salam A (2020) Internet of Things for sustainable community development, 1st edn. Springer Nature, New York. https://doi.org/10.1007/978-3-030-35291-2

  37. Salam A (2020) Internet of Things for sustainable community development: introduction and overview. Springer International Publishing, Cham, pp 1–31. https://doi.org/10.1007/978-3-030-35291-2_1

    Google Scholar 

  38. Salam A (2020) Internet of Things for sustainable forestry. Springer International Publishing, Cham, pp 147–181. https://doi.org/10.1007/978-3-030-35291-2_5

    Google Scholar 

  39. Salam A (2020) Internet of Things for sustainable human health. Springer International Publishing, Cham, pp 217–242. https://doi.org/10.1007/978-3-030-35291-2_7

    Google Scholar 

  40. Salam A (2020) Internet of Things for sustainable mining. Springer International Publishing, Cham, pp 243–271. https://doi.org/10.1007/978-3-030-35291-2_8

    Google Scholar 

  41. Salam A (2020) Internet of Things in sustainable energy systems. Springer International Publishing, Cham, pp 183–216. https://doi.org/10.1007/978-3-030-35291-2_6

    Google Scholar 

  42. Salam A (2020) Internet of Things in water management and treatment. Springer International Publishing, Cham, pp 273–298. https://doi.org/10.1007/978-3-030-35291-2_9

    Google Scholar 

  43. Salam A (2020) Wireless underground communications in sewer and stormwater overflow monitoring: radio waves through soil and asphalt medium. Information 11(2):98

    Google Scholar 

  44. Salam A, Karabiyik U (2019) A cooperative overlay approach at the physical layer of cognitive radio for digital agriculture. In: 3rd international Balkan conference on communications and networking (2019 BalkanCom), Skopje

    Google Scholar 

  45. Salam A, Shah S (2019) Internet of things in smart agriculture: enabling technologies. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE, New York, pp 692–695

    Google Scholar 

  46. Salam A, Vuran MC (2016) Impacts of soil type and moisture on the capacity of multi-carrier modulation in internet of underground things. In: Proceedings of the 25th ICCCN 2016, Waikoloa, HI

    Google Scholar 

  47. Salam A, Vuran MC (2017) EM-based wireless underground sensor networks, pp 247–285. https://doi.org/10.1016/B978-0-12-803139-1.00005-9

  48. Salam A, Vuran MC (2017) Smart underground antenna arrays: a soil moisture adaptive beamforming approach. In: Proceedings of the 36th IEEE INFOCOM 2017, Atlanta

    Google Scholar 

  49. Salam A, Vuran MC (2017) Wireless underground channel diversity reception with multiple antennas for internet of underground things. In: Proceedings of the IEEE ICC 2017, Paris

    Google Scholar 

  50. Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: impulse response analysis of wireless underground channel. In: Proceedings of the IEEE INFOCOM 2016, San Francisco

    Google Scholar 

  51. Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: impulse response analysis of wireless underground channel. In: The 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), San Francisco

    Google Scholar 

  52. Salam A, Vuran MC, Irmak S (2017) Towards internet of underground things in smart lighting: a statistical model of wireless underground channel. In: Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control (IEEE ICNSC), Calabria

    Google Scholar 

  53. Salam A, Hoang AD, Meghna A, Martin DR, Guzman G, Yoon YH, Carlson J, Kramer J, Yansi K, Kelly M, et al (2019) The future of emerging IoT paradigms: architectures and technologies. https://doi.org/10.20944/preprints201912.0276.v1

  54. Salam A, Vuran MC, Irmak S (2019) Di-sense: in situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Comput Netw 151:31–41. https://doi.org/10.1016/j.comnet.2019.01.001. http://www.sciencedirect.com/science/article/pii/S1389128618303141

  55. Scott WR, Smith GS (1992) Measured electrical constitutive parameters of soil as functions of frequency and moisture content. IEEE Trans Geosci Remote Sens 30(3):621–623. https://doi.org/10.1109/36.142943

    Google Scholar 

  56. Small EE, Larson KM, Chew CC, Dong J, Ochsner TE (2016) Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects. IEEE J Select Top Appl Earth Obs Remote Sens 9(10):4759–4770. https://doi.org/10.1109/JSTARS.2015.2504527

    Google Scholar 

  57. Smith G, Nordgard J (1985) Measurement of the electrical constitutive parameters of materials using antennas. IEEE Trans Anten Propag 33(7):783–792. https://doi.org/10.1109/TAP.1985.1143657

    Google Scholar 

  58. Smith GS, King RWP (1974) The resonant linear antenna as a probe for measuring the in situ electrical properties of geological media. J Geophys Res 79(17):2623–2628. http://dx.doi.org/10.1029/JB079i017p02623

    Google Scholar 

  59. Solimene R, D’Alterio A, Gennarelli G, Soldovieri F (2014) Estimation of soil permittivity in presence of antenna-soil interactions. IEEE J Select Top Appl Earth Obs Remote Sens 7(3):805–812. https://doi.org/10.1109/JSTARS.2013.2268576

    Google Scholar 

  60. Tan X, Sun Z, Akyildiz IF (2015) Wireless underground sensor networks: MI-based communication systems for underground applications. IEEE Anten Propag Mag 57(4). https://doi.org/10.1109/MAP.2015.2453917

  61. Temel S, Vuran MC, Lunar MM, Zhao Z, Salam A, Faller RK, Stolle C (2018) Vehicle-to-barrier communication during real-world vehicle crash tests. Comput Commun 127:172–186

    Google Scholar 

  62. Tiusanen MJ (2013) Soil scouts: description and performance of single hop wireless underground sensor nodes. Ad Hoc Netw 11(5):1610–1618. http://dx.doi.org/10.1016/j.adhoc.2013.02.002

    Google Scholar 

  63. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour Res 16(3):574–582. https://doi.org/10.1029/WR016i003p00574

    Google Scholar 

  64. Toro-Vazquez J, Rodriguez-Solis RA, Padilla I (2012) Estimation of electromagnetic properties in soil testbeds using frequency and time domain modeling. IEEE J Select Top Appl Earth Obs Remote Sens 5(3):984–989. https://doi.org/10.1109/JSTARS.2012.2193610

    Google Scholar 

  65. Ulaby FT, Long DG (2014) Microwave radar and radiometric remote sensing. University of Michigan Press, Ann Arbor

    Google Scholar 

  66. van der Velde R, Salama MS, Eweys OA, Wen J, Wang Q (2015) Soil moisture mapping using combined active/passive microwave observations over the east of the Netherlands. IEEE J Select Top Appl Earth Obs Remote Sens 8(9):4355–4372. https://doi.org/10.1109/JSTARS.2014.2353692

    Google Scholar 

  67. Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D, Roose T, Vanderborght J, Young M, Amelung W, Aitkenhead M, et al (2016) Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J 15(5):57 pp.

    Google Scholar 

  68. Vuran MC, Dong X, Anthony D (2015) Antenna for wireless underground communication. http://www.google.com/patents/US20150181315. US Patent App. 14/415,455

  69. Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw https://doi.org/10.1016/j.adhoc.2018.07.017. http://www.sciencedirect.com/science/article/pii/S1570870518305067

  70. Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground things: sensing and communications on the field for precision agriculture. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (WF-IoT 2018), Singapore

    Google Scholar 

  71. Wang JR, Schmugge TJ (1980) An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans Geosci Remote SensGE-18(4):288–295. https://doi.org/10.1109/TGRS.1980.350304

  72. Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62(1):33–36. https://doi.org/10.1109/PROC.1974.9382

    Google Scholar 

  73. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73. https://doi.org/10.1109/TAU.1967.1161901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A., Raza, U. (2020). Soil Moisture and Permittivity Estimation. In: Signals in the Soil. Springer, Cham. https://doi.org/10.1007/978-3-030-50861-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50861-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50860-9

  • Online ISBN: 978-3-030-50861-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics