Skip to main content

The Topology of Surface Singularities

  • Chapter
  • First Online:
Handbook of Geometry and Topology of Singularities I

Abstract

We consider a reduced complex surface germ (X, p). We do not assume that X is normal at p, and so, the singular locus ( Σ, p) of (X, p) could be one dimensional. This text is devoted to the description of the topology of (X, p). By the conic structure theorem (see Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press), (X, p) is homeomorphic to the cone on its link L X. First of all, for any good resolution ρ : (Y, E Y) → (X, 0) of (X, p), there exists a factorization through the normalization \(\nu : (\bar X,\bar p) \to (X,0 )\) (see H. Laufer, Normal two dimensional singularities, Ann. of Math. Studies 71, (1971), Princeton Univ. Press., Thm. 3.14). This is why we proceed in two steps.

  1. 1.

    When (X, p) a normal germ of surface, p is an isolated singular point and the link L X of (X, p) is a well defined differentiable three-manifold. Using the good minimal resolution of (X, p), L X is given as the boundary of a well defined plumbing (see Sect. 2.2) which has a negative definite intersection form (see Hirzebruch et al., Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol 4 (1972), Dekker, New-York and Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344).

  2. 2.

    In Sect. 2.3, we use a suitably general morphism, \(\pi : (X,p) \to (\mathbb {C} ^2, 0)\), to describe the topology of a surface germ (X, p) which has a 1-dimensional singular locus ( Σ, p). We give a detailed description of the quotient morphism induced by the normalization ν on the link \(L_{\bar X}\) of \( (\bar X, \bar p)\) (see also Sect. 2.2 in Luengo-Pichon, Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa).

In Sect. 2.4, we give a detailed proof of the existence of a good resolution of a normal surface germ by the Hirzebruch-Jung method (Theorem 2.4.6). With this method a good resolution is obtained via an embedded resolution of the discriminant of π (see Friedrich Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) p. 1–22). An example is given Sect. 2.6. An appendix (Sect. 2.5) is devoted to the topological study of lens spaces and to the description of the minimal resolution of quasi-ordinary singularities of surfaces. Section 2.5 provides the necessary background material to make the proof of Theorem 2.4.6 self-contained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Barth, C. Peters, A. Van de Ven: Compact Complex Surfaces, Ergebnisse der Mathematik, Springer (1984).

    Book  Google Scholar 

  2. J. Fernández de Bobadilla: A reformulation of Lê’s conjecture, Indag. Math.,N.S.,17 (2006), p. 345–352.

    Google Scholar 

  3. F. Bonahon: Difféctopies des espaces lenticulaires, Topology 22 (1983), p. 305–314.

    Article  MathSciNet  Google Scholar 

  4. E. Brieskorn: Rationale Singularitaten komplexer Flachen, Invent. Math. 4 (1968), p. 336–358.

    Article  MathSciNet  Google Scholar 

  5. E. Brieskorn: Singularities in the work of Friedrich Hirzebruch, Surveys in Differential Geometry 2000, Vol VII (2000), International Press p. 17–60.

    Google Scholar 

  6. E. Brieskorn and H. Knörrer: Ebene algebraische Kurven, Birkhäuser Verlag (1981) 964 p. or Plane Algebraic Curves, Birkhäuser Verlag, (1986).

    Google Scholar 

  7. A. Durfee: Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), 517–530.

    Article  MathSciNet  Google Scholar 

  8. D. Eisenbud, W: Neumann: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Annals of Math. Studies 110, Princeton University Press (1985).

    Google Scholar 

  9. Friedrich Hirzebruch: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) p. 1–22.

    Article  MathSciNet  Google Scholar 

  10. F. Hirzebruch, W. Neumann and S. Koh: Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol 4 (1972), Dekker, New-York.

    Google Scholar 

  11. H. Laufer: Normal two dimensional singularities, Ann. of Math. Studies 71, (1971), Princeton Univ. Press.

    Google Scholar 

  12. D. T. Lê, F. Michel and C. Weber: Courbes polaires et topologie des courbes planes, Ann. Scient. Ec. Norm. Sup., série 4, 24 (1991), 141–169.

    Google Scholar 

  13. D.T. Lê, C. Weber: Résoudre est un jeu d’enfants, Sem. Inst. de Estud. con Ibero-america y Portugal, Tordesillas (1998).

    Google Scholar 

  14. I. Luengo and A. Pichon: Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa.

    Google Scholar 

  15. H.Maugendre, F.Michel: On the growth behaviour of Hironaka quotients, ArXiv Mathematics 2017. Revised version in Journal of Singularities, Vol. 20 (2020), p. 31–53.

    Google Scholar 

  16. F. Michel, A. Pichon and C. Weber: The boundary of the Milnor fiber of Hirzebruch surface singularities, 745–760 in Singularity theory, World Sci. Publ. (2007), Hackensack, NJ.

    Google Scholar 

  17. F. Michel, C. Weber: Topologie des germes de courbes planes, prépublication de l’université de Genève, (1985).

    Google Scholar 

  18. J. Milnor: Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press.

    Google Scholar 

  19. D. Mumford: The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Etudes Sci. Publ. Math. 9 (1961), p. 5–22.

    Article  MathSciNet  Google Scholar 

  20. W. Neumann: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344.

    Article  MathSciNet  Google Scholar 

  21. P. Popescu-Pampu: Two-dimensional iterated torus knots and quasi-ordinary surface singularities, C.R.A.S. de Paris 336 (2003), p. 651–656.

    Google Scholar 

  22. P. Popescu-Pampu: Introduction to Jung’s method of resolution of singularities, in Topology of Algebraic Varieties and Singularities. Proceedings of the conference in honor of the 60th birthday of Anatoly Libgober, J. I. Cogolludo-Agustin et E. Hironaka eds. Contemporary Mathematics 538, AMS, (2011), p. 401–432.

    Google Scholar 

  23. F. Waldhausen: Über eine Klasse von 3-dimensionalen Mannigfaltigkeiten, Invent. Math. 3 (1967), p. 308–333 and 4 (1967), p. 87–117.

    Google Scholar 

  24. C. Weber: Lens spaces among 3-manifolds and quotient surface singularities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Sci. A Mat. RACSAM 112 (2018), p. 893–914.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Claude Weber for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michel, F. (2020). The Topology of Surface Singularities. In: Cisneros Molina, J.L., Lê, D.T., Seade, J. (eds) Handbook of Geometry and Topology of Singularities I. Springer, Cham. https://doi.org/10.1007/978-3-030-53061-7_2

Download citation

Publish with us

Policies and ethics