Abstract
We consider a reduced complex surface germ (X, p). We do not assume that X is normal at p, and so, the singular locus ( Σ, p) of (X, p) could be one dimensional. This text is devoted to the description of the topology of (X, p). By the conic structure theorem (see Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press), (X, p) is homeomorphic to the cone on its link L X. First of all, for any good resolution ρ : (Y, E Y) → (X, 0) of (X, p), there exists a factorization through the normalization \(\nu : (\bar X,\bar p) \to (X,0 )\) (see H. Laufer, Normal two dimensional singularities, Ann. of Math. Studies 71, (1971), Princeton Univ. Press., Thm. 3.14). This is why we proceed in two steps.
-
1.
When (X, p) a normal germ of surface, p is an isolated singular point and the link L X of (X, p) is a well defined differentiable three-manifold. Using the good minimal resolution of (X, p), L X is given as the boundary of a well defined plumbing (see Sect. 2.2) which has a negative definite intersection form (see Hirzebruch et al., Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol 4 (1972), Dekker, New-York and Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344).
-
2.
In Sect. 2.3, we use a suitably general morphism, \(\pi : (X,p) \to (\mathbb {C} ^2, 0)\), to describe the topology of a surface germ (X, p) which has a 1-dimensional singular locus ( Σ, p). We give a detailed description of the quotient morphism induced by the normalization ν on the link \(L_{\bar X}\) of \( (\bar X, \bar p)\) (see also Sect. 2.2 in Luengo-Pichon, Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa).
In Sect. 2.4, we give a detailed proof of the existence of a good resolution of a normal surface germ by the Hirzebruch-Jung method (Theorem 2.4.6). With this method a good resolution is obtained via an embedded resolution of the discriminant of π (see Friedrich Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) p. 1–22). An example is given Sect. 2.6. An appendix (Sect. 2.5) is devoted to the topological study of lens spaces and to the description of the minimal resolution of quasi-ordinary singularities of surfaces. Section 2.5 provides the necessary background material to make the proof of Theorem 2.4.6 self-contained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
W. Barth, C. Peters, A. Van de Ven: Compact Complex Surfaces, Ergebnisse der Mathematik, Springer (1984).
J. Fernández de Bobadilla: A reformulation of Lê’s conjecture, Indag. Math.,N.S.,17 (2006), p. 345–352.
F. Bonahon: Difféctopies des espaces lenticulaires, Topology 22 (1983), p. 305–314.
E. Brieskorn: Rationale Singularitaten komplexer Flachen, Invent. Math. 4 (1968), p. 336–358.
E. Brieskorn: Singularities in the work of Friedrich Hirzebruch, Surveys in Differential Geometry 2000, Vol VII (2000), International Press p. 17–60.
E. Brieskorn and H. Knörrer: Ebene algebraische Kurven, Birkhäuser Verlag (1981) 964 p. or Plane Algebraic Curves, Birkhäuser Verlag, (1986).
A. Durfee: Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), 517–530.
D. Eisenbud, W: Neumann: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Annals of Math. Studies 110, Princeton University Press (1985).
Friedrich Hirzebruch: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) p. 1–22.
F. Hirzebruch, W. Neumann and S. Koh: Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol 4 (1972), Dekker, New-York.
H. Laufer: Normal two dimensional singularities, Ann. of Math. Studies 71, (1971), Princeton Univ. Press.
D. T. Lê, F. Michel and C. Weber: Courbes polaires et topologie des courbes planes, Ann. Scient. Ec. Norm. Sup., série 4, 24 (1991), 141–169.
D.T. Lê, C. Weber: Résoudre est un jeu d’enfants, Sem. Inst. de Estud. con Ibero-america y Portugal, Tordesillas (1998).
I. Luengo and A. Pichon: Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa.
H.Maugendre, F.Michel: On the growth behaviour of Hironaka quotients, ArXiv Mathematics 2017. Revised version in Journal of Singularities, Vol. 20 (2020), p. 31–53.
F. Michel, A. Pichon and C. Weber: The boundary of the Milnor fiber of Hirzebruch surface singularities, 745–760 in Singularity theory, World Sci. Publ. (2007), Hackensack, NJ.
F. Michel, C. Weber: Topologie des germes de courbes planes, prépublication de l’université de Genève, (1985).
J. Milnor: Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press.
D. Mumford: The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Etudes Sci. Publ. Math. 9 (1961), p. 5–22.
W. Neumann: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344.
P. Popescu-Pampu: Two-dimensional iterated torus knots and quasi-ordinary surface singularities, C.R.A.S. de Paris 336 (2003), p. 651–656.
P. Popescu-Pampu: Introduction to Jung’s method of resolution of singularities, in Topology of Algebraic Varieties and Singularities. Proceedings of the conference in honor of the 60th birthday of Anatoly Libgober, J. I. Cogolludo-Agustin et E. Hironaka eds. Contemporary Mathematics 538, AMS, (2011), p. 401–432.
F. Waldhausen: Über eine Klasse von 3-dimensionalen Mannigfaltigkeiten, Invent. Math. 3 (1967), p. 308–333 and 4 (1967), p. 87–117.
C. Weber: Lens spaces among 3-manifolds and quotient surface singularities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Sci. A Mat. RACSAM 112 (2018), p. 893–914.
Acknowledgements
I thank Claude Weber for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Michel, F. (2020). The Topology of Surface Singularities. In: Cisneros Molina, J.L., Lê, D.T., Seade, J. (eds) Handbook of Geometry and Topology of Singularities I. Springer, Cham. https://doi.org/10.1007/978-3-030-53061-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-53061-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53060-0
Online ISBN: 978-3-030-53061-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)