Skip to main content

Potential and Applications of STL and DICOM Data Matching: MAPA Systems and F22 Aligners

  • Chapter
  • First Online:
3D Diagnosis and Treatment Planning in Orthodontics

Abstract

The introduction of 3D diagnostic methods has brought about a global revolution in modern orthodontics. Among these, the introduction of digital data systems (digital models as STL files and cone-beam computed tomography scans in DICOM format) has had great clinical impact. The latest orthodontic application of these types of data is the possibility of matching them to obtain precise and faithful 3D reconstructions that contain information on both dental arches and the dentoskeletal structures. Acquiring important information such as bone thickness and morphology has made it possible to improve the validity, safety and reliability of palatal miniscrew insertion through the construction of digitally designed surgical guides (miniscrew-assisted palatal application, MAPA system) that enable controlled miniscrew insertion at the required angle and at the optimal depth, providing bicortical or tricortical anchorage in a safe and repeatable fashion.

The 3D surgical guide is digitally designed to be perfectly congruent with the occlusal surfaces and the palatal mucosa, thereby providing stability during clinical insertion of miniscrews; these can be efficaciously used for hybrid anchorage (both dental and skeletal) of orthodontic appliances or even for pure skeletal anchorage for orthopaedic purposes, even in adult patients, increasing the range of patients that can be treated in the orthodontic clinic.

Once the more complex orthopaedic and dental issues have been resolved, it is possible to refine the occlusion using the F22 aligner system (Sweden & Martina, Due Carrare, PD, Italy). This has been designed to provide the aesthetic and comfort requested by many patients, especially adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graber LW, Vanarsdall RL, Katherine WLV, Huang GJ. Orthodontics. In: Current principles and techniques. 6th ed. St. Louis: Elsevier; 2017.

    Google Scholar 

  2. Gracco A, Lombardo L, Guarneri MP. La tomografia volumetrica in ortodonzia. Collana di Ortodonzia diretta dal prof. Damaso Caprioglio. Bologna: Edizioni Martina SRL; 2012.

    Google Scholar 

  3. SEDENTEXCT Guideline Development Panel. Radiation protection no 172. Cone beam CT for dental and maxillofacial radiology. Evidence based guidelines. Luxembourg: European Commission Directorate-General for Energy; 2012.

    Google Scholar 

  4. Garib DG, Calil LR, Leal CR, Janson G. Is there a consensus for CBCT use in orthodontics? Dent Press J Orthod. 2014;19(5):136–49.

    Article  Google Scholar 

  5. Lombardo L, Arreghini A, Guarneri MP, Lauritano D, Nardone M, Siciliani G. Unexpected artefacts and occult pathologies under CBCT. Oral Implantol. 2017;10(2):97–104.

    Article  Google Scholar 

  6. Maino G, Paoletto E, Lombardo L, Siciliani G. MAPA: a new high-precision 3D method of palatal miniscrew placement. EJCO. 2015.

    Google Scholar 

  7. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, Scheske MJ. Effective dose of dental CBCT—a meta-analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197.

    Article  Google Scholar 

  8. Lamichane M, Anderson NK, Rigali PH, Seldin EB, Will LA. Accuracy of reconstructed images from cone-beam computed tomography scans. Am J Orthod Dentofac Orthop. 2009;136(2):156.e1–6; discussion 156–7.

    Google Scholar 

  9. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review. Am J Orthod Dentofac Orthop. 2016;149(2):161–70.

    Article  Google Scholar 

  10. Fleming PS, Marinho V, Johal A. Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res. 2011;14:1–16.

    Article  Google Scholar 

  11. Luu NS, Nikolcheva LG, Retrouvey JM, Flores-Mir C, El-Bialy T, Carey JP, et al. Linear measurements using virtual study models. Angle Orthod. 2012;82:1098–106.

    Article  Google Scholar 

  12. Marcel T. Three-dimensional on-screen virtual models. Am J Orthod Dentofac Orthop. 2001;119:666–8.

    Article  Google Scholar 

  13. Sousa MV, Vasconcelos EC, Janson G, Garib D, Pinzan A. Accuracy and reproducibility of 3-dimensional digital model measurements. Am J Orthod Dentofac Orthop. 2012;142:269–73.

    Article  Google Scholar 

  14. Peluso MJ, Josell SD, Levine SW, Lorei BJ. Digital models: an introduction. Semin Orthod. 2004;10:226–38.

    Article  Google Scholar 

  15. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145(1):108–15.

    Article  Google Scholar 

  16. Gracco A, Buranello M, Cozzani M, Siciliani G. Digital and plaster models: a comparison of measurements and times. Prog Orthod. 2007;8(2):252–9.

    PubMed  Google Scholar 

  17. Hajeer MY. Assessment of dental arches in patients with Class II division 1 and division 2 malocclusions using 3D digital models in a Syrian sample. Eur J Paediatr Dent. 2014;15:151–7.

    PubMed  Google Scholar 

  18. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod. 2014;48:337–47.

    PubMed  Google Scholar 

  19. Huanca Ghislanzoni LT, Lineberger M, Cevidanes LHS, Mapelli A, Sforza C, McNamara JA. Evaluation of tip and torque on virtual study models: a validation study. Prog Orthod. 2013;14:19.

    Article  Google Scholar 

  20. Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyping J. 2009;15:216–25.

    Article  Google Scholar 

  21. Maino BG, Paoletto E, Lombardo L III, Siciliani G. A three-dimensional digital insertion guide for palatal miniscrew placement. J Clin Orthod. 2016;50(1):12–22.

    PubMed  Google Scholar 

  22. Maino BG, Paoletto E, Lombardo L, Siciiani G. From planning to delivery of a bone-borne rapid maxillary expander in one visit. J Clin Orthod. 2017;51(4):198–207.

    PubMed  Google Scholar 

  23. Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am J Orthod Dentofac Orthop. 2008;134(3):361–9.

    Article  Google Scholar 

  24. Lombardo L, Gracco A, Zampini F, Stefanoni F, Mollica F. Optimal palatal configuration for miniscrew applications. Angle Orthod. 2010;80(1):145–52.

    Article  Google Scholar 

  25. Lee RJ, Moon W, Hong C. Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. Am J Orthod Dentofac Orthop. 2017;151(5):887–97.

    Article  Google Scholar 

  26. Kim YH, Yang SM, Kim S, Lee JY, Kim KE, Gianelly AA, Kyung SH. Midpalatal miniscrews for orthodontic anchorage: factors affecting clinical success. Am J Orthod Dentofac Orthop. 2010;137(1):66–72.

    Article  Google Scholar 

  27. Mohammed H, Wafaie K, Rizk MZ, Almuzian M, Sosly R, Bearn DR. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod. 2018;19(1):36.

    Article  Google Scholar 

  28. Ardekian L, Oved-Peleg E, Mactei EE, Peled M. The clinical significance of sinus membrane perforation during augmentation of the maxillary sinus. J Oral Maxillofac Surg. 2006;64:277–82.

    Article  Google Scholar 

  29. Cordasco G, Matarese G, Rustico L, Fastuca S, Caprioglio A, Lindauer SJ. Efficacy of orthopedic treatment with protraction facemask on skeletal Class III malocclusion: a systematic review and meta-analysis. Orthod Craniofac Res. 2014;17:133–43.

    Article  Google Scholar 

  30. Maino G, Turci Y, Arreghini A, Paoletto E, Siciliani G, Lombardo L. Skeletal and dentoalveolar effects of hybrid rapid palatal expansion and facemask treatment in growing skeletal Class III patients. Am J Orthod Dentofac Orthop. 2018;153(2):262–8.

    Article  Google Scholar 

  31. Nienkemper M, Wilmes B, Franchi L, Drescher D. Effectiveness of maxillary protraction using a hybrid hyrax-facemask combination: a controlled clinical study. Angle Orthod. 2015;85(5):764–70.

    Article  Google Scholar 

  32. Liou EJ, Tsai WC. A new protocol for maxillary protraction in cleft patients: repetitive weekly protocol of alternate rapid maxillary expansions and constrictions. Cleft Palate Craniofac J. 2005;42(2):121–7.

    Article  Google Scholar 

  33. Lombardo L, Arreghini A, Maccarrone R, Bianchi A, Scalia S, Siciliani G. Optical properties of orthodontic aligners-spectrophotometry analysis of three types before and after aging. Prog Orthod. 2015;16:41.

    Article  Google Scholar 

  34. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 2015;85(5):881–9.

    Article  Google Scholar 

  35. Papadimitriou A, Mousoulea S, Gkantidis N, Kloukos D. Clinical effectiveness of Invisalign® orthodontic treatment: a systematic review. Prog Orthod. 2018;19(1):37.

    Article  Google Scholar 

  36. Karkhanechi M, Chow D, Sipkin J, Sherman D, Boylan RJ, Norman RG, Craig RG, Cisneros GJ. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy. Angle Orthod. 2013;83(1):146–51.

    Article  Google Scholar 

  37. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Periodontal health during clear aligners treatment: a systematic review. Eur J Orthod. 2015;37(5):539–43.

    Article  Google Scholar 

  38. Melsen B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am J Orthod. 1975;68(1):42–54.

    Article  Google Scholar 

  39. Baysal A, Uysala T, Velia I, et al. Evaluation of alveolar bone loss following rapid maxillary expansion using conebeam computed tomography. Korean J Orthod. 2013;43:83–95.

    Article  Google Scholar 

  40. Lo Giudice A, Barbato E, Cosentino L, Ferraro CM, Leonardi R. Alveolar bone changes after rapid maxillary expansion with tooth-born appliances: a systematic review. Eur J Orthod. 2018;40(3):296–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardo, L., Palone, M., Maino, G.B., Paoletto, E., Siciliani, G. (2021). Potential and Applications of STL and DICOM Data Matching: MAPA Systems and F22 Aligners. In: Retrouvey, JM., Abdallah, MN. (eds) 3D Diagnosis and Treatment Planning in Orthodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-57223-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57223-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57222-8

  • Online ISBN: 978-3-030-57223-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics