Skip to main content

Material Analysis and Testing

  • Chapter
  • First Online:
Accelerator Technology

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 900 Accesses

Abstract

Material analysis and testing add information and systematics to development processes. This boosts the technological development speed and aids in generating new ideas and solutions. As such, science and industry try improving their accuracy, resolution, and contrast mechanisms to enable extracting more knowledge from processes and samples. Accelerator based methods exploit photons, electrons, neutrons, and ions in probably >100 individual methods. All of them exploit similar physics and devices discussed earlier in this book. This chapter discusses about 30 methods, highlight their information properties to enable the reader understand and select a complementary set of methods for a given analysis problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C. Ascheron, Proton beam modification of selected AIII-BV compounds. Physica Status Solidi a 124, 11, S. 11–55 (1991)

    Google Scholar 

  • Brookhaven National Laboratory, GISAXS Community Website. Von (2018) https://gisaxs.com abgerufen

  • I. Bykov, H. Bergsåker, G. Possnert, Y. Zhou, K. Heinola, J. Pettersson, A. Widdowson, Studies of Be migration in the JET tokamak using AMS with 10Be marker. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 371, 370–375 (2016)

    Google Scholar 

  • Culham Centre for Fusion Energy, FISPACT-II material handbooks. Abgerufen am 05 2018 von (2018). https://www.ccfe.ac.uk/fispact_handbooks.aspx

  • B. Chaudhuri, I.G. Muñoz, S. Qian, V.S. Urban, Biological Small Angle Scattering: Techniques Strategies and Tips (Springer Nature Singapore Pte Ltd, 2017)

    Google Scholar 

  • C. Chung, F.Y. Lin, Prompt gamma activation analysis using mobile reactor neutron beam, in Proceedings of IUPAC International Congress on Analytical Sciences, S (2001). doi.org/10.14891/analscisp.17icas.0.i633.0

    Google Scholar 

  • F. De Corte, A. Simonits, Recommended nuclear data for use in the k0 standardization of neutron activation analysis. at. Data Nucl. Data Tables 85, 47–67 (2003)

    Article  ADS  Google Scholar 

  • C. Dellen, H.-G. Gehrke, S. Möller, C.-L. Tsai, U. Breuer, S. Uhlenbruck, O. Guillion, M. Finsterbusch, M. Bram, Time-of-flight secondary ion mass spectrometry study of lithium intercalation process in LiCoO2 thin film. J. Power Sourc. 321, S. 241–247 (2016)

    Google Scholar 

  • W.L. Friedrich, B. Kromer, M. Friedrich, J. Heinemeier, T. Pfeiffer, S. Talamo, Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 28 312(5773), 548 (2006). https://doi.org/10.1126/science.1125087

  • J.H. Gross, Mass Spectrometry: A Textbook (Springer, 2006)

    Google Scholar 

  • P.W. Hawkes, J.C, Spence, Handbook of Microscopy (Springer Nature Switzerland AG, 2019)

    Google Scholar 

  • A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. Markötter, J. Banhart, Tensorial neutron tomography of threedimensional dimensional magnetic vector fields in bulk materials. Nat. Commun. 9, 4023 (2018). https://doi.org/10.1038/s41467-018-06593-4

  • G.L. Hura, A.L. Menon, M. Hammel, R.P. Rambo II, F.L. Pooli Li, S.E. Tsutakawa, F.E. Jenney, S. Classen, F.A. Frankel, R.C. Hopkins, J.A. Tainer, Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009)

    Google Scholar 

  • A. Jablonski, F. Salvat, C.J. Powell, A.Y. Lee, NIST Electron Elastic-Scattering Cross-Section Database Version 4.0, NIST Standard Reference Database Number 64. Abgerufen am retrieved 2019 von (2016) https://srdata.nist.gov/srd64/ or https://doi.org/10.18434/T4/1502642

  • C. Jeynes, M. Bailey, N. Bright, M. Christopher, G. Grime, B. Jones, R. V.V. Palistin, R. Webb, “Total IBA”—where are we? Nucl. Instrum. Methods Phys. Res. Section B: Beam Interact. Mater. Atoms 271, 107–118 (2012). doi.org/10.1016/j.nimb.2011.09.020

    Google Scholar 

  • S. Kapishnikov, T. Staalsø, Y. Yang, J. Lee, A.J. Pérez-Berná, E. Pereiro, S. Werner, P. Guttman, L. Leiserowittz, J. Als-Nielsen, Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. PNAS 116(46), S. 22946–22952 (2019). https://doi.org/10.1073/pnas.1910123116

  • Los Alamos National Laboratory, MCNP Homepage. Von (2019). https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml abgerufen

  • E. Maire, P.J. Withers, Quantitative x-ray tomography. Int. Mater. Rev. 59(1), S. 1–43 (2014). https://doi.org/10.1179/1743280413Y.0000000023

  • M. Mayer, M. Balden, S. Brezinsek, V. Burwitz et al., Material erosion and deposition on the divertor of W7-X. Phys. Scripta, S (2020). https://doi.org/10.1088/1402–4896/ab4b8c

  • M. Mayer, S. Möller, M. Rubel, A. Widdowson, et al., Nuclear Fusion. 60(2) 025001 (2019) https://doi.org/10.1088/1741-4326/ab5817

  • M. Nastasi, J.W. Mayer, Y. Wang,. Ion Beam Analysis: Fundamentals and Applications (CRC Press, 2014)

    Google Scholar 

  • M.T. Postek, A.E. Vladar, J. Kramar, B. Ward, L.A. Stern, J. Notte, S. McVey, Helium ion microscopy: a new technique for semiconductor metrology and nanotechnology, in AIP Conference Proceedings 931, 161, S (2007). https://doi.org/10.1063/1.2799363

  • R. Rieder, R. Gellert, J. Brückner, G. Klingelhöfer, G. Dreibus, A. Yen, S.W. Squyres, The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 108(E12), 8066, S (2003). https://doi.org/10.1029/2003JE002150

  • M. Salmeron, From surfaces to interfaces: ambient pressure XPS and beyond. Top. Catal. 61, 2044–2051 (2018). https://doi.org/10.1007/s11244-018-1069-0

    Google Scholar 

  • H. Schnablegger, Y. Singh, The SAXS Guide (Anton Paar GmbH, Austria, 2017)

    Google Scholar 

  • Z. Siketić, I. Bogdanović Radović, I. Sudić, M. Jakšić, Surface analysis and depth profiling using time-of-flight elastic recoil detection analysis with argon sputtering. Sci. Rep. 8, S. 10392 (2018).https://doi.org/10.1038/s41598-018-28726-x

  • M. Stuiver, P.J. Reimer, T.F. Braziunas, High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 1127–1151 (1998). https://doi.org/10.1017/S0033822200060161

    Google Scholar 

  • V.N. Tondare, Quest for high brightness, monochromatic noble gas ion sources. J. Vac. Sci. Technol. A 23(6), 1498–1508 (2005)

    Article  ADS  Google Scholar 

  • C. Tötzke, N. Kardjilov, I. Manke, S.E. Oswald, Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Sci. Rep. 7. Article number: 6192 (2017)

    Google Scholar 

  • C. Tötzke, N. Kardjilov, N. Lenoir, I. Manke, S.E. Oswald, A. Tengattini, What comes NeXT? High-speed neutron tomography at ILL. Opt. Exp. 27(20), 28640–28648 (2019)

    Google Scholar 

  • C. Tuniz, Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science (CRC Press, 1998)

    Google Scholar 

  • UK Atomic Energy Authority, FISPACT-II. Von (2018) https://fispact.ukaea.uk/abgerufen

  • E von De Hoffmann, Mass Spectrometry Third Edition Interscience Principles and Applications (Wiley, 2007)

    Google Scholar 

  • P. van der Heide, Secondary ion mass spectrometry, an introduction to principles and practices (Wiley, 2014)

    Google Scholar 

  • K. Vogel-Mikuš, P. Pongrac, P. Pelicon, P. Vavpetič, B. Povh, H. Bothe, M. Regvar, Micro-PIXE Analysis for Localization and Quantification of Elements in Roots of Mycorrhizal Metal-Tolerant Plants. Symbiotic Fungi. Soil Biology, vol. 18 (Springer, Berlin, 2009)

    Google Scholar 

  • G.S. Was, Fundamentals of radiation materials science: Metals and alloys (Springer, Berlin Heidelberg, 2007). ISBN 978–3–540–49471–3

    Google Scholar 

  • D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009)

    Google Scholar 

  • A.B. Wittkower, H.D. Betz, Equilibrium-charge-state distributions of energetic ions (z > 1) in gaseous and solid media. Atomic Data 5(2) (1973)

    Google Scholar 

  • A. Xu, D.E. Armstrong, C. Beck, M.P. Moody, G.D. Smith, P.A. Bagot, S.G. Roberts, Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: an atom probe tomography and nanoindentation study. Acta Mater. 124, 71–78 (2017)

    Article  ADS  Google Scholar 

  • J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM—The Stopping and Range of Ions in Matter. (Chester, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Möller .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Möller, S. (2020). Material Analysis and Testing. In: Accelerator Technology. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-62308-1_7

Download citation

Publish with us

Policies and ethics