Skip to main content

Viscosity Solution

  • Reference work entry
  • First Online:
Computer Vision
  • 299 Accesses

Definition

Viscosity solution is a notion of weak solution for a class of partial differential equations of Hamilton-Jacobi type.

Background

A first-order partial differential equation of the type

$$ H\left(x,u(x), Du(x)\right)=0 $$
(1)

is called a Hamilton-Jacobi equation. A function u is said to be a classical solution of (Eq. 1) over a domain if u is continuous and differentiable over the entire domain and x, u(x), and Du(x) (the gradient of u at x) satisfy the above equation at every point of the domain. Consider the boundary value problem

$$ \left|{u}^{\prime }(x)\right|-1=0\;\mathrm{for}\;x\in \left(-1,1\right),u\left(\pm 1\right)=0. $$
(2)

By Rolle’s theorem, it is easily seen that classical solutions of the previous problem do not exist, whereas there exist infinite many weak solutions, that is, continuous functions which satisfy the equation at almost every point (the saw-tooth solutions, see Fig. 1a).

Viscosity Solution, Fig. 1
figure 2020figure 2020

Distance functions in 1D and 2D:(a) three...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crandall MG, Lions P-L (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Am Math Soc 277(1):1–42

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & control: foundations & applications. Birkhäuser, Boston. With appendices by Maurizio Falcone and Pierpaolo Soravia

    Book  MATH  Google Scholar 

  3. Bardi M, Crandall MG, Evans LC, Soner HM, Souganidis PE (1997) Viscosity solutions and applications. Lecture notes in mathematics, vol 1660. Springer, Berlin. Lectures given at the 2nd C.I.M.E. Session held in Montecatini Terme, June 12–20, 1995. Dolcetta IC, Lions PL (eds). Fondazione C.I.M.E. (C.I.M.E. Foundation)

    Google Scholar 

  4. Barles G (1994) Solutions de viscosité des équations de Hamilton-Jacobi. Volume 17 of Mathématiques & Applications (Berlin) (Mathematics & Applications). Springer, Paris

    Google Scholar 

  5. Fleming WH, Soner HM (2006) Controlled Markov processes and viscosity solutions. Stochastic modelling and applied probability, vol 25, 2nd edn. Springer, New York

    MATH  Google Scholar 

  6. Crandall MG, Ishii H, Lions PL (1992) User’s guide to viscosity solutions of second order partial, differential equations. Bull Am Math Soc 27:1–67

    Article  MathSciNet  MATH  Google Scholar 

  7. Camilli F, Siconolfi A (1999) Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana Univ Math J 48(3):1111–1132

    Article  MathSciNet  MATH  Google Scholar 

  8. Alvarez O, Tourin A (1996) Viscosity solutions of nonlinear integro-differential equations. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 13(3):293–317

    Article  MathSciNet  MATH  Google Scholar 

  9. Barles G, Imbert C (2008) Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 25(3):567–585

    Article  MathSciNet  MATH  Google Scholar 

  10. Barles G, Souganidis PE (1991) Convergence of approximation schemes for fully nonlinear second order equations. Asymptot Anal 4(3):271–283

    Article  MathSciNet  MATH  Google Scholar 

  11. Kimia BB, Tannenbaum AR, Zucker SW (1994) Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int J Comput Vis 15:189–224

    Article  Google Scholar 

  12. Tari ZSG, Shah J, Pien H (1997) Extraction of shape skeletons from grayscale images. Comput Vis Image Underst 66:133–146

    Article  Google Scholar 

  13. Arehart A, Vincent L, Kimia BB (1993) Mathematical morphology: the Hamilton-Jacobi connection. In: Proceedings of ICCV. IEEE Computer Society, Berlin, pp 215–219

    Google Scholar 

  14. Sapiro G, Kimia BB, Kimmel R, Shaked D, Bruckstein AM (1993) Implementing continuous-scale morphology. Pattern Recogn 26(9):1363–1372

    Article  Google Scholar 

  15. Donnell LO, Haker S, Westin C-F (2002) New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi T, Kikinis R (eds) Medical image computing and computer-assisted intervention MICCAI 2002. Lecture notes in computer science, vol 2488. Springer, Berlin/Heidelberg, pp 459–466

    Google Scholar 

  16. Lenglet C, Prados E, Pons J-P, Deriche R, Faugeras O (2009) Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM J Imaging Sci 2:285–322

    Article  MathSciNet  MATH  Google Scholar 

  17. Pechaud M (2009) Shortest paths calculations, and applications to medical imaging. PhD thesis, University of Paris Diderot

    Google Scholar 

  18. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Applied mathematical sciences. Springer, New York/Secaucus

    Book  MATH  Google Scholar 

  19. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Applied mathematics, vol 153. Springer, New York

    MATH  Google Scholar 

  21. Lions P-L, Rouy E, Tourin A (1993) Shape-from-shading, viscosity solutions and edges. Numer Math 64(3):323–353

    Article  MathSciNet  MATH  Google Scholar 

  22. Prados E, Faugeras O (2006) Shape from shading. In: Handbook of mathematical models in computer vision. Springer, New York, pp 375–388

    Chapter  Google Scholar 

  23. Prados E, Faugeras O (2005) Shape from shading: a well-posed problem? In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR’05), vol II. IEEE, San Diego, pp 870–877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Camilli, F., Prados, E. (2021). Viscosity Solution. In: Ikeuchi, K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-63416-2_686

Download citation

Publish with us

Policies and ethics