Skip to main content

Information Theory

  • Reference work entry
  • First Online:
Encyclopedia of Cryptography, Security and Privacy
  • 644 Accesses

The entropy function H( X) is a measure of the uncertainty of X, in formula

$$ H(X)=-\sum \limits_{a:{p}_X(a)>0}{p}_X(a)\cdot {\log}_2\, {p}_X(a), $$

where p X( a) =  Pr [ x =  A] denotes the probability that random variable X takes on value a. The interpretation is that with probability p X ( a), X can be described by log 2p X ( a) bits of information.

The conditional entropy or equivocation (Shannon 1948) H( XY) denotes the uncertainty of X provided Y is known:

$$\begin{aligned} &H\left(\left.X\right|Y\right)\\ &\ =-\sum \limits_{a,b:{p}_{\left.X\right|Y}\left(\left.a\right|b\right)>0}\!{p}_{X,Y}\left(a,b\right){\cdot} \log_2\, {p}_{\left.X\right|Y}\left(\left.a\right|b\right)\end{aligned} $$

where p X, Y ( a,  b)= def Pr [( X =  a) ∧ ( Y =  b)] and p X| Y ( a|  b) obeys Bayes’ rule for conditional probabilities:

$$ {\displaystyle \begin{aligned}{p}_{X,Y}\left(a,b\right)&={p}_Y(b)\cdot {p}_{X/Y}\left(a|b\right),\textrm{thus}\\ &\quad-{\log}_2\, {p}_{X,Y}\left(a,b\right)\\...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich L. Bauer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2025 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bauer, F.L. (2025). Information Theory. In: Jajodia, S., Samarati, P., Yung, M. (eds) Encyclopedia of Cryptography, Security and Privacy. Springer, Cham. https://doi.org/10.1007/978-3-030-71522-9_169

Download citation

Publish with us

Policies and ethics