Skip to main content

Waterborne Polyurethanes in Sustainability Development

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 745 Accesses

Abstract

The strive for more efficient materials, larger production, and diminish of cost along with the increasing environmental and health concerns led the scientific community and industry to shift gears to craft a more sustainable approach for the future. This chapter discusses the importance of waterborne polyurethanes as sustainable polymers that present high mechanical and thermal properties as well as resistance against external agents making them very suitable for applications in biomedical, corrosion and weather protective coatings, adhesives, sensors, electrical, electronics, etc. The use of bio-renewable sources has proven to be a smart way to address the main challenges of the status quo since most of these biomaterials replenish in a short time and can fit in most synthetic routes to acquire the targeted property. Materials such as soybean, corn, canola, castor, jatropha, and linseed oil can be easily converted into polyols to react with diisocyanates using green approaches that use water as the main solvent. The final products are a large number of bio-renewable waterborne polyurethanes with competitive properties and low cost that represent the future of the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agricultural Marketing Resource Center. (2020). No Title. In: Rapeseed. https://www.agmrc.org/commodities-products/grains-oilseeds/rapeseed. Accessed 6 Nov 2020

  • Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications—A review. RSC Advances, 6, 114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  Google Scholar 

  • Arniza, M. Z., Hoong, S. S., Idris, Z., Yeong, S. K., Hassan, H. A., Din, A. K., & Choo, Y. M. (2015). Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol. Journal of the American Oil Chemists Society, 92, 243–255. https://doi.org/10.1007/s11746-015-2592-9

    Article  Google Scholar 

  • Aung, M. M., Yaakob, Z., Kamarudin, S., & Abdullah, L. C. (2014). Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Industrial Crops and Products, 60, 177–185.

    Article  Google Scholar 

  • Babb, D. A. (2012). Polyurethanes from renewable resources. Advances in Polymer Science, 245, 315–360. https://doi.org/10.1007/12-2011-130

    Article  Google Scholar 

  • Bao, J., Qu, X., Qi, G., Huang, Q., Wu, S., Tao, C., Gao, M., & Chen, C. (2018). Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries. Solid State Ionics, 320, 55–63. https://doi.org/10.1016/j.ssi.2018.02.030

    Article  Google Scholar 

  • Biermann, U., Metzger, J. O., & Meier, M. A. R. (2010). Acyclic triene metathesis oligo-and polymerization of high oleic sun flower oil. Macromolecular Chemistry and Physics, 211, 854–862.

    Article  Google Scholar 

  • Biresaw, G., Laszlo, J. A., Evans, K. O., Compton, D. L., & Bantchev, G. B. (2014). Synthesis and tribological investigation of lipoyl glycerides. Journal of Agriculture and Food Chemistry, 62, 2233–2243. https://doi.org/10.1021/jf404289r

    Article  Google Scholar 

  • Blackwell, J., Nagarajan, M. R., & Hoitink, T. B. (1982). Structure of polyurethane elastomers: Effect of chain extender length on the structure of MDI/diol hard segments. Polymer (Guildf), 23, 950–956. https://doi.org/10.1016/0032-3861(82)90392-5

  • Calcagnile, P., Fragouli, D., Bayer, I. S., Anyfantis, G. C., Martiradonna, L., Cozzoli, P. D., Cingolani, R., & Athanassiou, A. (2012). Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano, 6, 5413–5419. https://doi.org/10.1021/nn3012948

    Article  Google Scholar 

  • Castleberry, R. M., Crum, C. W., & Krull CF (1984) Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Science, 24. https://doi.org/10.2135/cropsci1984.0011183X002400010008x

  • Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Quintana, P., & Bartolo-Pérez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6, 2035–2044. https://doi.org/10.1016/j.actbio.2009.12.010

  • Charlon, M., Heinrich, B., Matter, Y., Couzigné, E., Donnio, B., & Avérous, L. (2014). Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. European Polymer Journal, 61, 197–205. https://doi.org/10.1016/j.eurpolymj.2014.10.012

    Article  Google Scholar 

  • Chen, J. B., Guo, Q., Sun, J. L., Shao, X. L., & Nie, Z. J. (2011). A study on linseed oil modified waterborne polyurethane coatings. Materials Science Forum, 686, 528–532. https://doi.org/10.4028/www.scientific.net/MSF.686.528

    Article  Google Scholar 

  • Chen, M.-J., Shao, Z.-B., Wang, X.-L., Chen, L., & Wang, Y.-Z. (2012). Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant. Industrial and Engineering Chemistry Research, 51, 9769–9776. https://doi.org/10.1021/ie301004d

    Article  Google Scholar 

  • Chen, R., Zhang, C., & Kessler, M. R. (2014). Anionic waterborne polyurethane dispersion from a bio-based ionic segment. RSC Advances, 4, 35476–35483. https://doi.org/10.1039/c4ra07519f

    Article  Google Scholar 

  • Chen, J., Soucek, M. D., Simonsick, W. J., & Celikay, R. W. (2002). Synthesis and photopolymerization of norbornyl epoxidized linseed oil. Polymer (Guildf), 43, 5379–5389. https://doi.org/10.1016/S0032-3861(02)00404-4

  • Chen, S. G., Hu, J. W., Zhang, M. Q., Li, M. W., & Rong, M. Z. (2004) Gas sensitivity of carbon black/waterborne polyurethane composites. Carbon N Y, 42, 645–651. https://doi.org/10.1016/j.carbon.2004.01.002

  • Cho, J., Jung, Y.-C., Lee, Y. S., & Kim, D.-W. (2017). High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. Journal of Membrane Science, 535, 151–157. https://doi.org/10.1016/j.memsci.2017.04.042

  • Choi, H. Y., Bae, C. Y., & Kim, B. K. (2010). Nanoclay reinforced UV curable waterborne polyurethane hybrids. Progress in Organic Coatings, 68, 356–362. https://doi.org/10.1016/j.porgcoat.2010.03.015

  • Coutinho, F. M. B., Delpech, M. C., & Alves, L. S. (2001). Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly(propylene glycol): Synthesis and characterization. Journal of Applied Polymer Science, 80, 566–572. https://doi.org/10.1002/1097-4628(20010425)80:4%3c566::AID-APP1131%3e3.0.CO;2-H

    Article  Google Scholar 

  • Dai, H., Yang, L., Lin, B., Wang, C., & Shi, G. (2009). Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. Journal of the American Oil Chemists Society, 86, 261–267. https://doi.org/10.1007/s11746-008-1342-7

    Article  Google Scholar 

  • Daniel, D. R., Thompson, L. D., Shriver, B. J., Wu, C.-K., & Hoover, L. C. (2005). Nonhydrogenated cottonseed oil can be used as a deep fat frying medium to reduce trans-fatty acid content in french fries. Journal of the American Dietetic Association, 105, 1927–1932. https://doi.org/10.1016/j.jada.2005.09.029

  • De Souza, V. H. R., Silva, S. A., Ramos, L. P., & Zawadzki, S. F. (2012). Synthesis and characterization of polyols derived from corn oil by epoxidation and ozonolysis. Journal of the American Oil Chemists Society, 89, 1723–1731. https://doi.org/10.1007/s11746-012-2063-5

    Article  Google Scholar 

  • Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polymer Reviews, 52, 38. https://doi.org/10.1080/15583724.2011.640443

  • Díez-García, I., Eceiza, A., & Tercjak, A. (2019). Self-healable nanocomposites with enhanced thermal stability by incorporation of TiO2 nanoparticles to waterborne poly(urethane-urea) matrices based on amphiphilic triblock copolymers. Journal of Physical Chemistry C, 123, 21290–21298. https://doi.org/10.1021/acs.jpcc.9b06184

    Article  Google Scholar 

  • Dodiuk, H., & Goodman, S. H. (2014) Handbook of thermoset plastics (3rd edn.). William Andrew.

    Google Scholar 

  • Dodou, K. (2005). Investigations on gossypol: Past and present developments. Expert Opinion on Investigational Drugs, 14, 1419–1434. https://doi.org/10.1517/13543784.14.11.1419

    Article  Google Scholar 

  • Domanska, A., & Boczkowska, A. (2014). Biodegradable polyurethanes from crystalline prepolymers. Polymer Degradation and Stability, 108, 175–181. https://doi.org/10.1016/j.polymdegradstab.2014.06.017

  • Dworakowska, S., Bogdal, D., & Prociak, A. (2012). Microwave-assisted synthesis of polyols from rapeseed oil and properties of flexible polyurethane foams. Polymers (basel), 4, 1462–1477. https://doi.org/10.3390/polym4031462

    Article  Google Scholar 

  • Eberhart, R. C., Su, S.-H., Nguyen, K. T., Zilberman, M., Tang, L., Nelson, K. D., & Frenkel, P. (2003). Review: Bioresorbable polymeric stents: Current status and future promise. Journal of Biomaterials Science, Polymer Edition, 14, 299–312. https://doi.org/10.1163/156856203321478838

    Article  Google Scholar 

  • Elbers, N., Ranaweera, C. K., Ionescu, M., Wan, X., Kahol, P. K., & Gupta, R. K. (2017). Synthesis of novel biobased polyol via thiol-ene chemistry for rigid polyurethane foams. Journal of Renewable Materials, 5, 74–83. https://doi.org/10.7569/jrm.2017.634137

    Article  Google Scholar 

  • Engels, H.-W., Pirkl, H.-G., Albers, R., Albach, R. W., Krause, J., Hoffmann, A., Casselmann, H., & Dormish, J. (2013). Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie International Edition, 52, 9422–9441. https://doi.org/10.1002/anie.201302766

    Article  Google Scholar 

  • Feng, J., Ge, Z., Chai, C., Wang, S., Yu, D., Wu, G., & Luo, Y. (2016). Flame retardant modification of waterborne polyurethane fabric coating agent with high hydrostatic pressure resistance. Progress in Organic Coatings, 97, 91–98. https://doi.org/10.1016/j.porgcoat.2016.03.020

  • Gaddam, S. K., & Palanisamy, A. (2016). Anionic waterborne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Colloid and Polymer Science, 294, 347–355. https://doi.org/10.1007/s00396-015-3787-1

    Article  Google Scholar 

  • Gaddam, S. K., Kutcherlapati, S. N. R., & Palanisamy, A. (2017). Self-cross-linkable anionic waterborne polyurethane-silanol dispersions from cottonseed-oil-based phosphorylated polyol as ionic soft segment. ACS Sustainable Chemical & Engineering, 5, 6447–6455. https://doi.org/10.1021/acssuschemeng.7b00327

    Article  Google Scholar 

  • Garrison, T. F., Zhang, Z., Kim, H. J., Mitra, D., Xia, Y., Pfister, D. P., Brehm-Stecher, B. F., Larock, R. C., & Kessler, M. R. (2014b). Thermo-mechanical and antibacterial properties of soybean oil-based cationic polyurethane coatings: Effects of amine ratio and degree of crosslinking. Macromolecular Materials and Engineering, 299, 1042–1051. https://doi.org/10.1002/mame.201300423

    Article  Google Scholar 

  • Garrison, T. F., Kessler, M. R., & Larock, R. C. (2014). Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings. Polymer (Guildf), 55, 1004–1011. https://doi.org/10.1016/j.polymer.2014.01.014

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made—Supplementary Information. Science Advances, 3, 19–24. https://doi.org/10.1126/sciadv.1700782

    Article  Google Scholar 

  • Gogoi, P., Boruah, M., Bora, C., & Dolui, S. K. (2014). Jatropha curcas oil based alkyd/epoxy resin/expanded graphite (EG) reinforced bio-composite: Evaluation of the thermal, mechanical and flame retardancy properties. Progress in Organic Coatings, 77, 87–93. https://doi.org/10.1016/j.porgcoat.2013.08.006

  • Grand View Research. (2020). Plastic market size, share & trends analysis report by product forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/global-plastics-market. Accessed 6 Jul 2020

  • Gu, L., Ge, Z., Huang, M., & Luo, Y. (2015). Halogen-free flame-retardant waterborne polyurethane with a novel cyclic structure of phosphorus−nitrogen synergistic flame retardant. Journal of Applied Polymer Science, 132.https://doi.org/10.1002/app.41288

  • Gu, L., & Luo, Y. (2015). Flame retardancy and thermal decomposition of phosphorus-containing waterborne polyurethanes modified by halogen-free flame retardants. Industrial and Engineering Chemistry Research, 54, 2431–2438. https://doi.org/10.1021/ie5045692

    Article  Google Scholar 

  • Gurunathan, T., Rao, C. R. K., Narayan, R., & Raju, K. V. S. N. (2013). Synthesis, characterization and corrosion evaluation on new cationomeric polyurethane water dispersions and their polyaniline composites. Progress in Organic Coatings, 76, 639–647. https://doi.org/10.1016/j.porgcoat.2012.12.009

    Article  Google Scholar 

  • Hablot, E., Zheng, D., Bouquey, M., & Avérous, L. (2008). Polyurethanes based on castor oil: Kinetics, chemical, mechanical and thermal properties. Macromolecular Materials and Engineering, 293, 922–929. https://doi.org/10.1002/mame.200800185

    Article  Google Scholar 

  • Haynes, J., McLaughlin, J., Vasquez, L., & Hunsberger, A. (2001). Low-maintenance landscape plants for South Florida. Environ Hortic Dept, Florida Coop Ext Serv Univ Florida-IFAS Publ ENH854, Florida, USA, pp. 1–49

    Google Scholar 

  • Hazmi, A. S. A., Aung, M. M., Abdullah, L. C., Salleh, M. Z., & Mahmood, M. H. (2013). Producing Jatropha oil-based polyol via epoxidation and ring opening. Industrial Crops Products, 50, 563–567. https://doi.org/10.1016/j.indcrop.2013.08.003

  • Hsiao, S.-T., Ma, C.-C.M., Tien, H.-W., Liao, W.-H., Wang, Y.-S., Li, S.-M., & Huang, Y.-C. (2013). Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon N Y, 60, 57–66. https://doi.org/10.1016/j.carbon.2013.03.056

  • Huang, K., Liu, Z., Zhang, J., Li, S., Li, M., Xia, J., & Zhou, Y. (2014). Epoxy monomers derived from Tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromolecules, 15, 837–843. https://doi.org/10.1021/bm4018929

    Article  Google Scholar 

  • Ionescu, M. (2006). Mihail Ionescu: Chemistry and technology of polyols for polyurethanes. Polimeri, 26, 218–218.

    Google Scholar 

  • Javni, I., Petrović, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 77, 1723.

    Article  Google Scholar 

  • Jiang, X., Li, J., Ding, M., Tan, H., Ling, Q., Zhong, Y., & Fu, Q. (2007). Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal, 43, 1838–1846. https://doi.org/10.1016/j.eurpolymj.2007.02.029

  • Jin, Y.-Z., Hahn, Y. B., Nahm, K. S., & Lee, Y.-S. (2005) Preparation of stable polyurethane–polystyrene copolymer emulsions via RAFT polymerization process. Polymer (Guildf), 46, 11294–11300 . https://doi.org/10.1016/j.polymer.2005.10.049

  • Kathalewar, M., Sabnis, A., & D’Mello, D. (2014). Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. European Polymer Journal, 57, 99–108. https://doi.org/10.1016/j.eurpolymj.2014.05.008

  • Kim, B. K. (1996). Aqueous polyurethana dispersions. Colloid & Polymer Science, 274, 599–611. https://doi.org/10.1007/BF00653056

    Article  Google Scholar 

  • Kim, H. M., Kim, K., Lee, C. Y., Joo, J., Cho, S. J., Yoon, H. S., Pejaković, D. A., Yoo, J.-W., & Epstein, A. J. (2004). Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Applied Physics Letters, 84, 589–591. https://doi.org/10.1063/1.1641167

  • Kong, X., Li, S., Qu, J., & Chen, H. (2010). Self-emulsifying hydroxy acrylic polymer dispersions for two component waterborne polyurethane coatings. Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 47, 368–374. https://doi.org/10.1080/10601320903539330

    Article  Google Scholar 

  • Kosheeladevi, P. P., Tuan Noor Maznee, T. I., Hoong, S. S., Nurul’Ain, H., Mohd Norhisham, S., Norhayati, M. N., Srihanum, A., Yeong, S. K., Hazimah, A. H., Sendijarevic, V., & Sendijarevic, A. (2016). Performance of palm oil-based dihydroxystearic acid as ionizable molecule in waterborne polyurethane dispersions. Journal of Applied Polymer Science, 133, 1–10.https://doi.org/10.1002/app.43614

  • Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28, 1–10. https://doi.org/10.1016/j.indcrop.2008.01.001

  • Lee, A., & Deng, Y. (2015). Green polyurethane from lignin and soybean oil through non-isocyanate reactions. European Polymer Journal, 63, 67–73. https://doi.org/10.1016/j.eurpolymj.2014.11.023

    Article  Google Scholar 

  • Li, K., Peng, J., Zhang, M., Heng, J., Li, D., & Mu, C. (2015). Comparative study of the effects of anatase and rutile titanium dioxide nanoparticles on the structure and properties of waterborne polyurethane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 92–99. https://doi.org/10.1016/j.colsurfa.2015.01.072

  • Liang, H., Liu, L., Lu, J., Chen, M., & Zhang, C. (2018). Castor oil-based cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties. Industrial Crops and Products, 117, 169–178. https://doi.org/10.1016/j.indcrop.2018.02.084

    Article  Google Scholar 

  • Liang, B., Zhao, J., Li, G., Huang, Y., Yang, Z., & Yuan, T. (2019). Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings. Industrial Crops and Products, 138, 111585. https://doi.org/10.1016/j.indcrop.2019.111585

  • List, G. R. (2016). Chapter 15—Processing and food uses of peanut oil and protein. In H. T. Stalker & F. Wilson (Eds.), Peanuts (pp. 405–428). AOCS Press.

    Google Scholar 

  • Liu, H., & Chung, H. (2017). Visible-light induced thiol-ene reaction on natural lignin. ACS Sustainable Chemistry & Engineering, 5, 9160–9168. https://doi.org/10.1021/acssuschemeng.7b02065

    Article  Google Scholar 

  • Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2007). Poly(ether urethane) networks from renewable resources as candidate biomaterials: Synthesis and characterization. Biomacromolecules, 8, 686–692. https://doi.org/10.1021/bm060977h

    Article  Google Scholar 

  • Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2013) Renewable polymeric materials from vegetable oils: A perspective. Materials Today, 16, 337–343 . https://doi.org/10.1016/j.mattod.2013.08.016

  • Long, L., Wang, S., Xiao, M., & Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal Materials Chemistry A, 4, 10038–10069. https://doi.org/10.1039/C6TA02621D

    Article  Google Scholar 

  • Lu, Y., Tighzert, L., Dole, P., & Erre, D. (2005). Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer (Guildf), 46, 9863–9870. https://doi.org/10.1016/j.polymer.2005.08.026

  • Lu, Y., Tighzert, L., Berzin, F., & Rondot, S. (2005) Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydrate Polymers, 61, 174–182. https://doi.org/10.1016/j.carbpol.2005.04.013

  • Lu, Y., & Larock, R. C. (2007). New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules, 8, 3108–3114. https://doi.org/10.1021/bm700522z

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2008). Soybean-oil-based waterborne polyurethane dispersions: Effects of polyol functionality and hard segment content on properties. Biomacromolecules, 9, 3332–3340. https://doi.org/10.1021/bm801030g

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2009). Novel polymeric materials from vegetable oils and vinyl monomers: Preparation, properties, and applications. Chemsuschem, 2, 136–147. https://doi.org/10.1002/cssc.200800241

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2010a). Aqueous cationic polyurethane dispersions from vegetable oils. Chemsuschem, 3, 329–333. https://doi.org/10.1002/cssc.200900251

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2010b). Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Progress in Organic Coatings, 69, 31–37. https://doi.org/10.1016/j.porgcoat.2010.04.024

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2011). Synthesis and properties of grafted latices from a soybean oil-based waterborne polyurethane and acrylics. Journal of Applied Polymer Science, 119, 3305–3314. https://doi.org/10.1002/app.29029

    Article  Google Scholar 

  • Madbouly, S. A., & Otaigbe, J. U. (2009). Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 34, 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002

    Article  Google Scholar 

  • Malini, R., Uma, U., Sheela, T., Ganesan, M., & Renganathan, N. G. (2009). Conversion reactions: A new pathway to realise energy in lithium-ion battery—Review. Ionics (kiel), 15, 301–307. https://doi.org/10.1007/s11581-008-0236-x

    Article  Google Scholar 

  • Man, L., Feng, Y., Hu, Y., Yuan, T., & Yang, Z. (2019). A renewable and multifunctional eco-friendly coating from novel tung oil-based cationic waterborne polyurethane dispersions. Journal of Cleaner Production, 241, 118341. https://doi.org/10.1016/j.jclepro.2019.118341

    Article  Google Scholar 

  • Meier, M. A. R., Metzger, J. O., & Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Reviews, 36, 1788–1802. https://doi.org/10.1039/B703294C

    Article  Google Scholar 

  • De Milliano, J. W., Woolnough, A., Reeves, A., & Shepherd, D. (2010). Ecologically significant invasive species: A monitoring framework for natural resource management groups in Western Australia. Department of Agriculture and Food, Western Australia, Perth

    Google Scholar 

  • Mittal, J. P., Dhawan, K. C., & Thyagraj, C. R. (1991). Energy scenario of castor crop under dryland agriculture of Andhra Pradesh. Energy Conversion and Management, 32, 425–430. https://doi.org/10.1016/0196-8904(91)90003-2

    Article  Google Scholar 

  • Mosiewicki, M. A., Dell’Arciprete, G. A., Aranguren, M. I., & Marcovich, N. E. (2009). Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. Journal of Composite Materials, 43, 3057–3072. https://doi.org/10.1177/0021998309345342

    Article  Google Scholar 

  • Mu, Y., Wan, X., Han, Z., Peng, Y., & Zhong, S. (2012). Rigid polyurethane foams based on activated soybean meal. Journal of Applied Polymer Science, 124, 4331–4338. https://doi.org/10.1002/app.35612

    Article  Google Scholar 

  • Mumtaz, F., Zuber, M., Zia, K. M., Jamil, T., & Hussain, R. (2013). Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol. Korean Journal of Chemical Engineering, 30, 2259–2263. https://doi.org/10.1007/s11814-013-0166-9

    Article  Google Scholar 

  • Nanda, A. K., Wicks, D. A., Madbouly, S. A., & Otaigbe, J. U. (2005). Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. Journal of Applied Polymer Science, 98, 2514–2520.

    Article  Google Scholar 

  • Nieschlag, H. J., & Wolff, I. A. (1971). Industrial uses of high erucic oils. Journal of the American Oil Chemists Society, 48, 723–727. https://doi.org/10.1007/BF02638529

    Article  Google Scholar 

  • Omrani, I., Babanejad, N., Shendi, H. K., & Nabid, M. R. (2017). Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug. European Journal of Lipid Science and Technology, 119, 1600283. https://doi.org/10.1002/ejlt.201600283

    Article  Google Scholar 

  • Oskoueian, E., Abdullah, N., Hendra, R., & Karimi, E. (2011). Bioactive compounds, antioxidant, xanthine oxidase inhibitory, tyrosinase inhibitory and anti-inflammatory activities of selected agro-industrial by-products. International Journal of Molecular Sciences, 12.

    Google Scholar 

  • Palaskar, D. V., Boyer, A., Cloutet, E., Alfos, C., & Cramail, H. (2010). Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromolecules, 11, 1202–1211. https://doi.org/10.1021/bm100233v

    Article  Google Scholar 

  • Park, S. H., Chung, I. D., Hartwig, A., & Kim, B. K. (2007). Hydrolytic stability and physical properties of waterborne polyurethane based on hydrolytically stable polyol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 126–131. https://doi.org/10.1016/j.colsurfa.2007.04.051

  • Petrović, Z. S. (2008). Polyurethanes from vegetable oils. Polymer Reviews, 48, 109. https://doi.org/10.1080/15583720701834224

    Article  Google Scholar 

  • Petrović, Z. S., Zhang, W., & Javni, I. (2005). Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules, 6, 713–719. https://doi.org/10.1021/bm049451s

    Article  Google Scholar 

  • Petroviƈ, Z. S., Cvetković, I., Hong, D., Wan, X., & Zhang, W. (2008). Polyester polyols and polyurethanes from ricinoleic acid. Journal of Applied Polymer Science, 108, 1184–1190. https://doi.org/10.1002/app.27783

    Article  Google Scholar 

  • Pfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent advances in vegetable oil-based polyurethanes. ChemSusChem, 4, 703. https://doi.org/10.1002/cssc.201000378

  • Philipp, C., & Eschig, S. (2012). Waterborne polyurethane wood coatings based on rapeseed fatty acid methyl esters. Progress in Organic Coatings, 74, 705–711. https://doi.org/10.1016/j.porgcoat.2011.09.028

    Article  Google Scholar 

  • Poth, U. (2001). Drying oils and related products. Ullmann's Encyclopedia of Industrial Chemistry.

    Google Scholar 

  • Qi, J., Lai, X., Wang, J., Tang, H., Ren, H., Yang, Y., Jin, Q., Zhang, L., Yu, R., Ma, G., Su, Z., Zhao, H., & Wang, D. (2015). Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 44, 6749–6773. https://doi.org/10.1039/C5CS00344J

    Article  Google Scholar 

  • Qiu, S., Deng, F., Xu, S., Liu, P., Min, X., & Ma, F. (2015). Degradation of pollutant and antibacterial activity of waterborne polyurethane/doped TiO2 nanoparticle hybrid films. J Wuhan Univ Technol Sci Ed, 30, 447–451. https://doi.org/10.1007/s11595-015-1169-7

    Article  Google Scholar 

  • Ramanujam, S., Zequine, C., Bhoyate, S., Neria, B., Kahol, P., & Gupta, R. (2019). Novel biobased polyol using corn oil for highly flame-retardant polyurethane foams. C, 5, 13. https://doi.org/10.3390/c5010013

  • Reeves, J. T., Visco, M. D., Marsini, M. A., Grinberg, N., Busacca, C. A., Mattson, A. E., & Senanayake, C. H. (2015). A general method for imine formation using B(OCH2CF3)3. Organic Letters, 17, 2442–2445. https://doi.org/10.1021/acs.orglett.5b00949

    Article  Google Scholar 

  • Remya, V., Patil, D., Abitha, V., & Ajay Rane, R. M. (2016). Biobased materials for polyurethane dispersions. Chemistry International, 2, 158–167.

    Google Scholar 

  • Ritchie, A. G. (2001). Recent developments and future prospects for lithium rechargeable batteries. Journal of Power Sources, 96, 1–4. https://doi.org/10.1016/S0378-7753(00)00673-X

  • Saalah, S., Abdullah, L. C., Aung, M. M., Salleh, M. Z., Awang Biak, D. R., Basri, M., & Jusoh, E. R. (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Industrial Crops and Products, 64, 194–200. https://doi.org/10.1016/j.indcrop.2014.10.046

  • Saetung, A., Kaenhin, L., Klinpituksa, P., Rungvichaniwat, A., Tulyapitak, T., Munleh, S., Campistron, I., & Pilard, J.-F. (2012). Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. Journal of Applied Polymer Science, 124, 2742–2752. https://doi.org/10.1002/app.35318

    Article  Google Scholar 

  • Santerre, J. P., Labow, R. S., Duguay, D. G., Erfle, D., & Adams, G. A. (1994). Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. Journal of Biomedical Materials Research, 28, 1187–1199. https://doi.org/10.1002/jbm.820281009

    Article  Google Scholar 

  • Santerre, J. P., Woodhouse, K., Laroche, G., & Labow, R. S. (2005). Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26, 7457–7470. https://doi.org/10.1016/j.biomaterials.2005.05.079

  • Sardari, A., Sabbagh Alvani, A. A., & Ghaffarian, S. R. (2019). Castor oil-derived water-based polyurethane coatings: Structure manipulation for property enhancement. Progress in Organics Coatings, 133, 198–205. https://doi.org/10.1016/j.porgcoat.2019.04.030

    Article  Google Scholar 

  • Sarin, R., Sharma, M., Sinharay, S., Malhotra, R. K. (2007) Jatropha–Palm biodiesel blends: An optimum mix for Asia. Fuel 86:1365–1371. https://doi.org/10.1016/j.fuel.2006.11.040

  • Shahbandeh, M. (2020). No Title. In: Rapeseed Prod. Vol. Worldw. by Ctry. 2019/2020. https://www.statista.com/statistics/263930/worldwide-production-of-rapeseed-by-country/#:~:text=Rapeseed production volume worldwide by country 2019%2F2020&text=Canada was the leading producer,metric tons in 2019%2F2020. Accessed 6 Nov 2020

  • Song, Y., Gao, Y., Wan, X., Luo, F., Li, J., Tan, H., & Fu, Q. (2016). Dual-functional anticoagulant and antibacterial blend coatings based on gemini quaternary ammonium salt waterborne polyurethane and heparin. RSC Advances, 6, 17336–17344. https://doi.org/10.1039/c5ra27081b

    Article  Google Scholar 

  • de Souza, F., Choi, J., Bhoyate, S., Kahol, P. K., Gupta, R. K. (2020). Expendable graphite as an efficient flame-retardant for novel partial bio-based rigid polyurethane foams. C, 1–13. https://doi.org/10.3390/c6020027

  • Stipanovic, R. D., Stoessl, A., Stothers, J. B., Altman, D. W., Bell, A. A., & Heinstein, P. (1986). The stereochemistry of the biosynthetic precursor of gossypol. Journal of the Chemical Society, Chemical Communications, 100–102.https://doi.org/10.1039/C39860000100

  • Stirna, U., Fridrihsone, A., Lazdiņa, B., Misāne, M., & Vilsone, D. (2013). Biobased polyurethanes from rapeseed oil polyols: Structure, mechanical and thermal properties. Journal of Polymers and the Environment, 21, 952–962. https://doi.org/10.1007/s10924-012-0560-0

    Article  Google Scholar 

  • Stirna, U., Fridrihsone-Girone, A., Yakushin, V., & Vilsone, D. (2014). Processing and properties of spray-applied, 100% solids polyurethane coatings from rapeseed oil polyols. Journal of Coatings Technology and Research, 11, 409–420. https://doi.org/10.1007/s11998-013-9545-8

    Article  Google Scholar 

  • Sugita, P., & Mas’ud, Z. A. (2013). Synthesis and application of Jatropha oil based polyurethane as paint coating material. Makara Journal of Science, 134–140. https://doi.org/10.7454/mss.v16i2.1409

  • Sundar, S., Vijayalakshmi, N., Gupta, S., Rajaram, R., & Radhakrishnan, G. (2006). Aqueous dispersions of polyurethane–polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing. Progress in Organic Coatings, 56, 178–184. https://doi.org/10.1016/j.porgcoat.2006.04.001

  • Suresh, K. I., & Harikrishnan, M. G. (2014). Effect of cardanol diol on the synthesis, characterization, and film properties of aqueous polyurethane dispersions. Journal of Coatings Technology and Research, 11, 619–629. https://doi.org/10.1007/s11998-014-9571-1

    Article  Google Scholar 

  • Szycher, M. (2012). Waterborne polyurethanes. In M. Szycher (Ed.), Szychers handbook of polyurethanes (2nd ed., pp. 449–494). CRC Press.

    Chapter  Google Scholar 

  • Thomson, T. (2000). Design and applications of hydrophilic polyurethanes. CRC Press.

    Book  Google Scholar 

  • The Food and Agriculture Organization. (2020). No Title. In: Prod. Quant. Soybeans by Ctry. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 6 Nov 2020

  • Tripathi, V., Abidi, A. B., Markerb, S., & Bilal, S. (2013). Linseed and linseed oil: Health benefits—A review. International Journal Pharmacy and Biological Sciences, 3, 434–442.

    Google Scholar 

  • Tritt, T. M., Böttner, H., & Chen, L. (2008). Thermoelectrics: Direct solar thermal energy conversion. MRS Bulletin, 33, 366–368. https://doi.org/10.1557/mrs2008.73

  • Unsworth, W. D., Angelini, G. D., & Pistolesi, C. (1997). Heart valve prosthesis.

    Google Scholar 

  • Valero, M. F., Pulido, J. E., Hernández, J. C., Posada, J. A., Ramírez, A., & Cheng, Z. (2009). Preparation and properties of polyurethanes based on castor oil chemically modified with yucca starch glycoside. Journal of Elastomers and Plastics, 41, 223–244. https://doi.org/10.1177/0095244308091785

    Article  Google Scholar 

  • Vásquez, L., Campagnolo, L., Athanassiou, A., & Fragouli, D. (2019). Expanded graphite-polyurethane foams for water-oil filtration. ACS Applied Materials & Interfaces, 11, 30207–30217. https://doi.org/10.1021/acsami.9b07907

    Article  Google Scholar 

  • Vereshchagin, A. G., & Novitskaya, G. V. (1965). The triglyceride composition of linseed oil. Journal of the American Oil Chemists Society, 42, 970–974. https://doi.org/10.1007/BF02632457

    Article  Google Scholar 

  • Vicente, G., Martínez, M., & Aracil, J. (2005). Optimization of Brassica carinata oil methanolysis for biodiesel production. Journal of the American Oil Chemists Society, 82, 899–904. https://doi.org/10.1007/s11746-005-1162-6

    Article  Google Scholar 

  • Wang, Z. X., Yuan, J. T., Liu, Q. L., Xiao, X. M., Li, Y. H., & Chen, H. (2014). Synthesis and characterization of a novel waterborne polyurethane modified by Tung Oil. Applied Mechanics and Materials, 513–517, 251–254. https://doi.org/10.4028/www.scientific.net/AMM.513-517.251

    Article  Google Scholar 

  • Wang, Y. J., Jeng, U. S., & Hsu, S. H. (2018). Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 4, 1397–1406. https://doi.org/10.1021/acsbiomaterials.8b00091

    Article  Google Scholar 

  • Wang, H., Wang, S., Du, X., Wang, H., Cheng, X., & Du, Z. (2019). Synthesis of a novel flame retardant based on DOPO derivatives and its application in waterborne polyurethane. RSC Advances, 9, 7411–7419. https://doi.org/10.1039/C8RA09838G

    Article  Google Scholar 

  • Wang, S., & Min, K. (2010). Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer (Guildf), 51, 2621–2628. https://doi.org/10.1016/j.polymer.2010.04.038

  • Wang, H.-L., Gopalan, A., & Wen, T.-C. (2003). A novel lithium single ion based polyurethane electrolyte for light-emitting electrochemical cell. Materials Chemistry and Physics, 82, 793–800. https://doi.org/10.1016/S0254-0584(03)00363-8

  • Wang, H.-L., Fu, C.-M., Gopalan, A., & Wen, T.-C. (2004). Frequency dependent conductivity of the thin film blend of electroluminescent poly(p-phenylene vinylene) with waterborne polyurethane as ionomer. Thin Solid Films, 466, 197–203. https://doi.org/10.1016/j.tsf.2004.01.098

  • Wang, S., Jeung, S., & Min, K. (2010). The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes. Polymer (Guildf), 51, 2864–2871. https://doi.org/10.1016/j.polymer.2010.04.022

  • Warner, K., Orr, P., Parrott, L., & Glynn, M. (1994). Effects of frying oil composition on potato chip stability. Journal of the American Oil Chemists Society, 71, 1117–1121. https://doi.org/10.1007/BF02675905

    Article  Google Scholar 

  • Wen, J. G., Geng, W., Geng, H. Z., Zhao, H., Jing, L. C., Yuan, X. T., Tian, Y., Wang, T., Ning, Y. J., & Wu, L. (2019). Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets. ACS Omega, 4, 20265–20274. https://doi.org/10.1021/acsomega.9b02687

    Article  Google Scholar 

  • Wicks, D. A., & Wicks, Z. W. (2005). Autoxidizable urethane resins. Progress in Organic Coatings, 54, 141–149. https://doi.org/10.1016/j.porgcoat.2004.12.006

  • Wu, S., Deng, D., Zhou, L., Zhang, P., & Tang, G. (2019). Flame retardancy and thermal degradation of rigid polyurethane foams composites based on aluminum hypophosphite. Materials Research Express, 6.https://doi.org/10.1088/2053-1591/ab41b2

  • Wu, Q., & Hu, J. (2016). Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Composites. Part B, Engineering, 107, 59–66.

    Article  Google Scholar 

  • Xia, Y., Zhang, Z., Kessler, M. R., Brehm-Stecher, B., & Larock, R. C. (2012). Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols. Chemsuschem, 5, 2221–2227. https://doi.org/10.1002/cssc.201200352

    Article  Google Scholar 

  • Xiao, Y., Fu, X., Zhang, Y., Liu, Z., Jiang, L., & Lei, J. (2016). Preparation of waterborne polyurethanes based on the organic solvent-free process. Green Chemistry, 18, 412–416. https://doi.org/10.1039/C5GC01197C

    Article  Google Scholar 

  • Xie, Y., Zou, H., Xiang, H., Xia, R., Liang, D., Shi, P., Dai, S., & Wang, H. (2016). Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. Journal of Membrane Science, 503, 25–30. https://doi.org/10.1016/j.memsci.2015.12.025

  • Xue, Z., He, D., & Xie, X. (2015). Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 3, 19218–19253. https://doi.org/10.1039/C5TA03471J

    Article  Google Scholar 

  • Yang, X. (2015). Synthesis and properties of novel non-ionic polyurethane dispersion based on hydroxylated tung oil and alicyclic isocyanates. Journal of Materials Science and Chemical Engineering, 3, 88. https://doi.org/10.4236/msce.2015.31013

    Article  Google Scholar 

  • Yang, C.-H., Lin, S.-M., & Wen, T.-C. (1995). Application of statistical experimental strategies to the process optimization of waterborne polyurethane. Polymer Engineering & Science, 35, 722–730. https://doi.org/10.1002/pen.760350812

    Article  Google Scholar 

  • Yang, J.-E., Kong, J.-S., Park, S.-W., Lee, D.-J., & Kim, H.-D. (2002). Preparation and properties of waterborne polyurethane–urea anionomers. I. The influence of the degree of neutralization and counterion. Journal of Applied Polymer Science, 86, 2375–2383. https://doi.org/10.1002/app.11249

    Article  Google Scholar 

  • Yin, C., Zhao, Y., Yang, C., & Zhang, S. (2000). Single-ion transport light-emitting electrochemical cells: Designation and analysis of the fast transient light-emitting responses. Chemistry of Materials, 12, 1853–1856. https://doi.org/10.1021/cm0001408

    Article  Google Scholar 

  • Yin, X., Luo, Y., & Zhang, J. (2017). Synthesis and characterization of halogen-free flame retardant two-component waterborne polyurethane by different modification. Industrial and Engineering Chemistry Research, 56, 1791–1802. https://doi.org/10.1021/acs.iecr.6b04452

    Article  Google Scholar 

  • Yoo, Y., & Youngblood, J. P. (2017). Tung oil wood finishes with improved weathering, durability, and scratch performance by addition of cellulose nanocrystals. ACS Applied Materials & Interfaces, 9, 24936–24946. https://doi.org/10.1021/acsami.7b04931

    Article  Google Scholar 

  • Zhang, J. L., Wu, D. M., Yang, D. Y., & Qiu, F. X. (2010). Environmentally friendly polyurethane composites: Preparation, characterization and mechanical properties. Journal of Polymers and the Environment, 18, 128–134. https://doi.org/10.1007/s10924-010-0178-z

    Article  Google Scholar 

  • Zhang, M., Zhao, F., & Luo, Y. (2019). Self-healing mechanism of microcracks on waterborne polyurethane with tunable disulfide bond contents. ACS Omega, 4, 1703–1714. https://doi.org/10.1021/acsomega.8b02923

    Article  Google Scholar 

  • Zhengxiang, W., Jianlong, W., & Lizheng, G. (2012). Synthesis and characterization of Tung oil-based waterborne polyurethane. Paint & Coatings Industry, 7.

    Google Scholar 

  • Zhou, X., Li, Y., Fang, C., Li, S., Cheng, Y., Lei, W., & Meng, X. (2015). Recent Advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science and Technology, 31, 708–722. https://doi.org/10.1016/j.jmst.2015.03.002

    Article  Google Scholar 

  • Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540, 354–362. https://doi.org/10.1038/nature21001

    Article  Google Scholar 

  • Zieleniewska, M., Auguścik, M., Prociak, A., Rojek, P., & Ryszkowska, J. (2014). Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polymer Degradation and Stability, 108, 241–249. https://doi.org/10.1016/j.polymdegradstab.2014.03.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza, F.M., Gupta, R.K. (2021). Waterborne Polyurethanes in Sustainability Development. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_5

Download citation

Publish with us

Policies and ethics