Skip to main content

Abstract

In the last 5–7 years, cerebellar and spinal DC stimulation received growing attention by experimental and clinical neuroscientists. Although the clinical efficacy of cerebellar and spinal tDCS awaits confirmation in large, clinical, randomized controlled studies, there are now several important key points underlying their mechanisms of action that should be discussed. Briefly, delivering DC currents for few minutes over the cerebellum or spinal cord can induce persistent, polarity-dependent excitability changes persisting several minutes after the current offset. Cerebellar DC stimulation can elicit neurophysiological and behavioral changes both in the motor functions and in cognitive-behavioral domain. Spinal cord DC stimulation elicits not only neurophysiological and behavioral changes related to spinal cord functions, but, interestingly, also changes in the brain functions that may arise from the activation of tonic afferent systems to the brain. Future studies should endeavor to assess whether experimental data translate into benefits in real life, lengthen behavioral benefits, investigate how changing stimulation variables influences tDCS-induced effects, determine possible interactions with other treatments, and improve patients’ selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.

    Article  CAS  PubMed  Google Scholar 

  2. Koziol LF, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(Pt 3):918–23.

    Article  PubMed  Google Scholar 

  4. Phillips JR, et al. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grimaldi G, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2011;22(1):83–97.

    Article  Google Scholar 

  6. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14(1):27–30.

    Article  PubMed  Google Scholar 

  7. Brookhart JM. A study of corticospinal activation of motor neurons. Res Publ Assoc Res Nerv Ment Dis. 1952;30:157–73.

    CAS  PubMed  Google Scholar 

  8. O’Connell NE, et al. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2014;4:CD008208.

    Google Scholar 

  9. Tortella G, et al. Transcranial direct current stimulation in psychiatric disorders. World J Psychiatry. 2015;5(1):88–102.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuo MF, Nitsche MA. Exploring prefrontal cortex functions in healthy humans by transcranial electrical stimulation. Neurosci Bull. 2015;31(2):198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meron D, et al. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev. 2015;57:46–62.

    Article  PubMed  Google Scholar 

  12. Ho KA, et al. A pilot study of alternative transcranial direct current stimulation electrode montages for the treatment of major depression. J Affect Disord. 2014;167:251–8.

    Article  PubMed  Google Scholar 

  13. Minichino A, et al. Prefronto-cerebellar transcranial direct current stimulation improves sleep quality in euthymic bipolar patients: a brief report. Behav Neurol. 2014;2014:876521.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Minichino A, et al. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:2265–70.

    PubMed  PubMed Central  Google Scholar 

  15. Bation R, et al. Transcranial direct current stimulation in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;65:153–7.

    Article  Google Scholar 

  16. Ahmed Z. Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice. J Appl Physiol (1985). 2011;110(5):1414–24.

    Article  Google Scholar 

  17. Ahmed Z. Effects of cathodal trans-spinal direct current stimulation on mouse spinal network and complex multijoint movements. J Neurosci. 2013;33(37):14949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cogiamanian F, et al. Transcutaneous spinal direct current stimulation. Front Psych. 2012;3:63.

    Google Scholar 

  19. Cogiamanian F, et al. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119(11):2636–40.

    Article  PubMed  Google Scholar 

  20. Cogiamanian F, et al. Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain. 2011;152(2):370–5.

    Article  PubMed  Google Scholar 

  21. Woods AJ, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2015;127(2):1031–48.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hubli M, et al. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol. 2013;124(6):1187–95.

    Article  CAS  PubMed  Google Scholar 

  23. Lamy JC, et al. Modulation of soleus H reflex by spinal DC stimulation in humans. J Neurophysiol. 2012;108(3):906–14.

    Article  PubMed  Google Scholar 

  24. Winkler T, Hering P, Straube A. Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol. 2010;121(6):957–61.

    Article  CAS  PubMed  Google Scholar 

  25. Parazzini M, et al. Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clin Neurophysiol. 2014;125(11):2260–70.

    Article  PubMed  Google Scholar 

  26. Lamy JC, Boakye M. Seeking significance for transcutaneous spinal DC stimulation. Clin Neurophysiol. 2013;124(6):1049–50.

    Article  PubMed  Google Scholar 

  27. Bocci T, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lim CY, Shin HI. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22(16):819–23.

    Article  PubMed  Google Scholar 

  29. Truini A, et al. Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur J Pain. 2011;15(10):1023–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bocci T, et al. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. J Neurophysiol. 2015;114(1):440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhadra N, Kilgore KL. Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng. 2004;12(3):313–24.

    Article  PubMed  Google Scholar 

  32. Stagg CJ, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picelli A, et al. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci. 2015;33(3):357–68.

    PubMed  Google Scholar 

  34. Aguilar J, et al. Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. J Physiol. 2011;589(Pt 20):4981–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bocci T, et al. An unexpected target of spinal direct current stimulation: interhemispheric connectivity in humans. J Neurosci Methods. 2015;254:18–26.

    Article  PubMed  Google Scholar 

  36. Song W, et al. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. J Neurophysiol. 2015;113(7):2801–11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schlaier JR, et al. Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study. Eur J Pain. 2007;11(8):863–8.

    Article  PubMed  Google Scholar 

  38. Paradiso C, et al. Cervical and scalp recorded short latency somatosensory evoked potentials in response to epidural spinal cord stimulation in patients with peripheral vascular disease. Electroencephalogr Clin Neurophysiol. 1995;96(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  39. Nierat MC, Similowski T, Lamy JC. Does trans-spinal direct current stimulation alter phrenic motoneurons and respiratory neuromechanical outputs in humans? A double-blind, sham-controlled, randomized, crossover study. J Neurosci. 2014;34(43):14420–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer-Friessem CH, et al. Transcutaneous spinal DC stimulation reduces pain sensitivity in humans. Neurosci Lett. 2015;589:153–8.

    Article  CAS  PubMed  Google Scholar 

  41. Heide AC, et al. Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients. Brain Stimul. 2014;7(5):636–42.

    Article  CAS  PubMed  Google Scholar 

  42. Goncalves OF, et al. Obsessive compulsive disorder as a functional interhemispheric imbalance at the thalamic level. Med Hypotheses. 2011;77(3):445–7.

    Article  PubMed  Google Scholar 

  43. Innocenti GM, Ansermet F, Parnas J. Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry. 2003;8(3):261–74.

    Article  CAS  PubMed  Google Scholar 

  44. Bajwa S, et al. Impaired interhemispheric interactions in patients with major depression. J Nerv Ment Dis. 2008;196(9):671–7.

    Article  PubMed  Google Scholar 

  45. Condes-Lara M. Different direct pathways of locus coeruleus to medial prefrontal cortex and centrolateral thalamic nucleus: electrical stimulation effects on the evoked responses to nociceptive peripheral stimulation. Eur J Pain. 1998;2(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka M, et al. The origins of catecholaminergic innervation in the rostral ventromedial medulla oblongata of the rat. Neurosci Lett. 1996;207(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  47. Voisin DL, et al. Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat. J Physiol. 2005;566(Pt 3):929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Azmitia EC, et al. 5-HT1A agonist and dexamethasone reversal of para-chloroamphetamine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain. Brain Res. 1995;677(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  49. Bachatene L, et al. Fluoxetine and serotonin facilitate attractive-adaptation-induced orientation plasticity in adult cat visual cortex. Eur J Neurosci. 2013;38(1):2065–77.

    Article  PubMed  Google Scholar 

  50. Maya Vetencourt JF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ramos AJ, et al. The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res. 2004;1030(2):201–20.

    Article  CAS  PubMed  Google Scholar 

  52. Cotel F, et al. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation. Proc Natl Acad Sci U S A. 2013;110(12):4774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26(4):331–43.

    Article  CAS  PubMed  Google Scholar 

  54. Ptak K, et al. Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J Neurosci. 2009;29(12):3720–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brunoni AR, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Ferrucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrucci, R., Bocci, T., Priori, A. (2021). Cerebellar and Spinal tDCS. In: Brunoni, A.R., Nitsche, M.A., Loo, C.K. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-76136-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76136-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76135-6

  • Online ISBN: 978-3-030-76136-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics