Abstract
In this chapter, we address some applications of the theory of Hopf algebras that have been popular recently, starting essentially in the late 1990s and early 2000s with the works of Alain Connes and Dirk Kreimer on renormalization in perturbative quantum field theory (pQFT).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
See K. Ebrahimi-Fard, F. Patras, N. Tapia, L. Zambotti, Hopf algebraic deformations of products and Wick polynomials. International Mathematics Research Notices, rny269, 2018.
- 2.
For details and more advanced results on the subject, see, e.g., G. Peccati and M. S. Taqqu. Wiener chaos: moments, cumulants, and diagrams. Springer and Bocconi University Press, Milan, 2011.
- 3.
Our definition and the proof of the next Proposition follow D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries. Proc. Sympos. Pure Math. 73 (2001), 43-80. The difficult part in handling Feynman graphs is to take into account of isomorphisms and the combinatorial coefficients they create (the symmetry factors). The combinatorics of graph insertions is carefully studied in W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach. Communications in mathematical physics, 276(3), (2007) 773-798. The reader is referred to this article for details and the graph-theoretic framework surrounding these constructions.
- 4.
The dualization has to take into account combinatorial symmetry factors, see again van Suijlekom, op. cit.
- 5.
The content of this section is based on K. Ebrahimi-Fard and F. Patras, Exponential renormalization. Ann. Henri Poincaré 11(5), 411–433 (2002).
References
Brouder, Ch.: Quantum field theory meets Hopf algebra. Math. Nachr. 282, 1664–90 (2009)
Brouder, Ch., Fauser, B., Frabetti, A., Oeckl, R.: Quantum field theory and Hopf algebra cohomology. J. Phys. A Math. Gen. 37, 5895–5927 (2004)
Brouder, Ch., Patras, F.: Nonlocal, noncommutative diagrammatics and the linked cluster theorems. J. Math. Chem. 50, 552–576 (2012)
Collins, J.C.: Renormalization. Cambridge University Press, Cambridge (1984)
Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000)
Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The \(\beta \)-function, diffeomorphisms and the renormalization group. Comm. Math. Phys. 216(1), 215–241 (2001)
Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3(3), 411–433 (2002)
Djah, S.H., Gottschalk, H., Ouerdiane, H.: Feynman graph representation of the perturbation series for general functional measures. J. Funct. Anal. 227, 153–187 (2005)
Ebrahimi-Fard, K., Patras, F.: Exponential renormalization. Ann. Henri Poincaré 11(5), 943–971 (2010)
Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization II: Bogoliubov’s R-operation and momentum subtraction schemes. J. Math. Phys. 53 (2012)
Ebrahimi-Fard, K., Patras, F., Tapia, N., Zambotti, L.: Hopf-algebraic deformations of products and Wick polynomials. International Mathematics Research Notices, rny269 (2018)
Kleinert, H., Schulte-Frohlinde, V.: Critical Properties of \(\varphi ^4\)-theories. World Scientific, Singapore (2001)
Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theory. Adv. Th. Math. Phys. 2, 303–334 (1998)
Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer and Bocconi University Press, Milan (2011)
Lukkarinen, J., Marcozzi, M.: Wick polynomials and time-evolution of cumulants. J. Math. Phys., 57(8), 083301, 27 (2016)
Mattuck, R.D.: A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn. McGraw-Hill, New York (1976)
Mestre, A., Oeckl, R.: Combinatorics of \(n\)-point functions via Hopf algebra in quantum field theory. J. Math. Phys. 47 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cartier, P., Patras, F. (2021). Renormalization. In: Classical Hopf Algebras and Their Applications. Algebra and Applications, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-77845-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-77845-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77844-6
Online ISBN: 978-3-030-77845-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)