Skip to main content

Renormalization

  • Chapter
  • First Online:
Classical Hopf Algebras and Their Applications

Part of the book series: Algebra and Applications ((AA,volume 29))

  • 1577 Accesses

Abstract

In this chapter, we address some applications of the theory of Hopf algebras that have been popular recently, starting essentially in the late 1990s and early 2000s with the works of Alain Connes and Dirk Kreimer on renormalization in perturbative quantum field theory (pQFT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See K. Ebrahimi-Fard, F. Patras, N. Tapia, L. Zambotti, Hopf algebraic deformations of products and Wick polynomials. International Mathematics Research Notices, rny269, 2018.

  2. 2.

    For details and more advanced results on the subject, see, e.g., G. Peccati and M. S. Taqqu. Wiener chaos: moments, cumulants, and diagrams. Springer and Bocconi University Press, Milan, 2011.

  3. 3.

    Our definition and the proof of the next Proposition follow D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries. Proc. Sympos. Pure Math. 73 (2001), 43-80. The difficult part in handling Feynman graphs is to take into account of isomorphisms and the combinatorial coefficients they create (the symmetry factors). The combinatorics of graph insertions is carefully studied in W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach. Communications in mathematical physics, 276(3), (2007) 773-798. The reader is referred to this article for details and the graph-theoretic framework surrounding these constructions.

  4. 4.

    The dualization has to take into account combinatorial symmetry factors, see again van Suijlekom, op. cit.

  5. 5.

    The content of this section is based on K. Ebrahimi-Fard and F. Patras, Exponential renormalization. Ann. Henri Poincaré 11(5), 411–433 (2002).

References

  1. Brouder, Ch.: Quantum field theory meets Hopf algebra. Math. Nachr. 282, 1664–90 (2009)

    Article  MathSciNet  Google Scholar 

  2. Brouder, Ch., Fauser, B., Frabetti, A., Oeckl, R.: Quantum field theory and Hopf algebra cohomology. J. Phys. A Math. Gen. 37, 5895–5927 (2004)

    Article  MathSciNet  Google Scholar 

  3. Brouder, Ch., Patras, F.: Nonlocal, noncommutative diagrammatics and the linked cluster theorems. J. Math. Chem. 50, 552–576 (2012)

    Article  MathSciNet  Google Scholar 

  4. Collins, J.C.: Renormalization. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000)

    Google Scholar 

  6. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The \(\beta \)-function, diffeomorphisms and the renormalization group. Comm. Math. Phys. 216(1), 215–241 (2001)

    Google Scholar 

  7. Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3(3), 411–433 (2002)

    Article  MathSciNet  Google Scholar 

  8. Djah, S.H., Gottschalk, H., Ouerdiane, H.: Feynman graph representation of the perturbation series for general functional measures. J. Funct. Anal. 227, 153–187 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ebrahimi-Fard, K., Patras, F.: Exponential renormalization. Ann. Henri Poincaré 11(5), 943–971 (2010)

    Article  MathSciNet  Google Scholar 

  10. Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization II: Bogoliubov’s R-operation and momentum subtraction schemes. J. Math. Phys. 53 (2012)

    Google Scholar 

  11. Ebrahimi-Fard, K., Patras, F., Tapia, N., Zambotti, L.: Hopf-algebraic deformations of products and Wick polynomials. International Mathematics Research Notices, rny269 (2018)

    Google Scholar 

  12. Kleinert, H., Schulte-Frohlinde, V.: Critical Properties of \(\varphi ^4\)-theories. World Scientific, Singapore (2001)

    Book  Google Scholar 

  13. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theory. Adv. Th. Math. Phys. 2, 303–334 (1998)

    Article  Google Scholar 

  14. Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer and Bocconi University Press, Milan (2011)

    Book  Google Scholar 

  15. Lukkarinen, J., Marcozzi, M.: Wick polynomials and time-evolution of cumulants. J. Math. Phys., 57(8), 083301, 27 (2016)

    Google Scholar 

  16. Mattuck, R.D.: A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn. McGraw-Hill, New York (1976)

    Google Scholar 

  17. Mestre, A., Oeckl, R.: Combinatorics of \(n\)-point functions via Hopf algebra in quantum field theory. J. Math. Phys. 47 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cartier .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cartier, P., Patras, F. (2021). Renormalization. In: Classical Hopf Algebras and Their Applications. Algebra and Applications, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-77845-3_10

Download citation

Publish with us

Policies and ethics