Skip to main content

Microbial Production of Terpenes

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

Sustainability is one of the main challenges facing humankind in the twenty-first century due to the continuous increase in the demand for energy and resources that characterizes our current industrial activity, driven in part by exponential population growth. This problem can be tackled from different strategies and among them the search for biomolecules, either recovered through processes based on the circular economy or through synthetic biology, are highly promising. In this sense, terpenes, the largest family of secondary metabolites in the plant kingdom, have attracted much of the research in recent decades in pursuit of alternative, more ecological, and sustainable ways for their obtention. The reasons for this interest are due to their extensive structural diversity and the possibility of gaining new functionalities, simply by chemical modification, which also makes them excellent candidates in areas such as biomaterials and pharmaceuticals. But also, the fact that the natural biosynthetic pathways of terpenes are well known from the point of view of metabolites and enzymes facilitates their industrial production using genetically modified microorganisms.

This chapter aims to give the reader a broad but at the same time comprehensive view of the production of microbial terpenes in a sustainability context. Starting by the circumstances that lead to the need to look for renewable sources of biomolecules and following by why terpenes represent a very promising opportunity even if only their characteristics from a chemical and bioactivity point of view were considered. Finally, it will be discussed which microorganisms can produce these unique lipids and how, the main option followed nowadays is using synthetic biology strategies, involving modified organisms that are already being used on an industrial scale for applications ranging from biofuels to pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja K, Bayas S. Farnesene market size by application (cosmetics & personal care, performance material, Flavors & Fragrances, Fuels & Lubes), industry analysis report, regional outlook, application potential, price trends, Competitive Market Share & Forecast, 2021–2027. 2021.

    Google Scholar 

  • Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol. 2011;77(3):1033–40.

    Article  CAS  Google Scholar 

  • Amyris. Farnesene.net. 2021.

    Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, et al. Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv. 2018;36(2):452–66.

    Article  CAS  Google Scholar 

  • Belcher MS, Mahinthakumar J, Keasling JD. New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol. 2020;65:88–93.

    Article  CAS  Google Scholar 

  • Benjamin KR, Silva IR, Cherubim JP, McPhee D, Paddon CJ. Developing commercial production of semi-synthetic artemisinin, and of β-Farnesene, an isoprenoid produced by fermentation of Brazilian sugar. J Braz Chem Soc. 2016;27(8):1339–45.

    CAS  Google Scholar 

  • Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 2016;113(12):3209–14.

    Article  CAS  Google Scholar 

  • Bušić A, Mardetko N, Kundas S, Morzak G, Belskaya H, Šantek MI, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol. 2018;56(3):289–311.

    Article  Google Scholar 

  • Carsanba E, Pintado M, Oliveira C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals. 2021;295:1–29

    Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14(6):12780–805.

    Article  Google Scholar 

  • Chan P, Tomlinson B, Lee CB, Lee YS. Effectiveness and safety of low-dose pravastatin and squalene, alone and in combination, in elderly patients with hypercholesterolemia. J Clin Pharmacol. 1996;36(5):422–7.

    Article  CAS  Google Scholar 

  • Chiurchiù V, Leuti A, Maccarrone M. Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol. 2018;38:1–11

    Google Scholar 

  • ClimateWatch. World greenhouse gas emissions in 2016 by sector, end use and gases (static) 2020.

    Google Scholar 

  • Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Med Plants From Farm to Pharm 2019;333–59.

    Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ. Biochemistry of Oleoresinosis : monoterpene and Diterpene biosynthesis in Lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol. 1987;85(4):1123.

    Article  CAS  Google Scholar 

  • da Silveira Vasconcelos M, de Oliveira LMN, Nunes-Pinheiro DCS, da Silva Mendes FR, de Sousa FD, de Siqueira Oliveira L, et al. Analysis of tetraterpenes and tetraterpenoids (carotenoids). In: Recent advances in natural products analysis. Amsterdam, Elsevier; 2020. p. 427–56.

    Google Scholar 

  • De Petrocellis L, Di Marzo V. An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab. 2009;23(1):1–15.

    Article  Google Scholar 

  • Della Monica F, Kleij AW. From terpenes to sustainable and functional polymers. Polym Chem. 2020;11(32):5109–27.

    Article  CAS  Google Scholar 

  • Deng Y, Sun M, Xu S, Zhou J. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J Appl Microbiol. 2016;121(1):187–95.

    Article  CAS  Google Scholar 

  • Dhall S, Wijesinghe DS, Karim ZA, Castro A, Vemana HP, Khasawneh FT, et al. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen. 2015;23(5):644–56.

    Article  Google Scholar 

  • Ekanayake Mudiyanselage S, Hamburger M, Elsner P, Thiele JJ. Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol. 2003;120(6):915–22.

    Article  Google Scholar 

  • Erb M, Kliebenstein DJ. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol. 2020;184(1):39–52.

    Article  CAS  Google Scholar 

  • FAOSTAT. FAOSTAT: Statistical database. 2020.

    Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global Carbon Budget 2020. Earth Syst Sci Data. 2020;12(4):3269–340.

    Article  Google Scholar 

  • Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The circular economy – a new sustainability paradigm? J Clean Prod. 2017;143:757–68.

    Article  Google Scholar 

  • Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering strategies in microorganisms for the enhanced production of squalene: advances, challenges and opportunities. Front Bioeng Biotechnol. 2019;7:1–24.

    Google Scholar 

  • Grand View Research. Artemisinin combination therapy market size, share & trends report Artemisinin combination therapy market size, share & trends analysis report by type (Artemether+Lumefantrine, Artesunate+Amodiaquine), By Region, And Segment Forecasts, 2018–2025. 2018.

    Google Scholar 

  • Grand View Research. Cannabidiol market size, share & trends analysis report by source type (hemp, marijuana), by distribution channel (B2B, B2C), by end-use (medical, personal use), By Region, And Segment Forecasts, 2021–2028. 2021.

    Google Scholar 

  • Guo K, Liu X, Zhou TT, Liu YC, Liu Y, Shi QM, et al. Gentianelloids a and B: immunosuppressive 10,11- seco-Gentianellane Sesterterpenoids from the traditional Uighur medicine Gentianella turkestanorum. J Organomet Chem. 2020;85(8):5511–5.

    Article  CAS  Google Scholar 

  • Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ. Paclitaxel: biosynthesis, production and future prospects. New Biotechnol. 2014;31(3):242–5.

    Article  CAS  Google Scholar 

  • Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, et al. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A. 2017;114(29):E6005–14.

    Article  CAS  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol. 2014;3(5):298–306.

    Article  CAS  Google Scholar 

  • Jacobson MR, Watts JJ, Boileau I, Tong J, Mizrahi R. A systematic review of phytocannabinoid exposure on the endocannabinoid system: implications for psychosis. Eur Neuropsychopharmacol. 2019;29(3):330–48.

    Article  CAS  Google Scholar 

  • Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P. A review on third generation bioethanol feedstock. Renew Sust Energ Rev. 2016;65:756–69.

    Article  CAS  Google Scholar 

  • Jung SH, Ha YJ, Shim EK, Choi SY, Jin JL, Yun-Choi HS, et al. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J. 2007;403(2):243–50.

    Article  CAS  Google Scholar 

  • Kiyama R. Estrogenic terpenes and terpenoids: pathways, functions and applications. Eur J Pharmacol. 2017;815:405–15.

    Article  CAS  Google Scholar 

  • Kumar V, Abbas A., Aster JC. Inflammation and repair. In: Robbins and Cotran pathologic basis of disease. 10th ed. Philadelphia: Elsevier; 2021.

    Google Scholar 

  • las Heras B, Rodriguez B, Bosca L, Villar A. Terpenoids: sources, structure elucidation and therapeutic potential in inflammation. Curr Top Med Chem. 2005;3(2):171–85.

    Article  Google Scholar 

  • Li Z, Howell K, Fang Z, Zhang P. Sesquiterpenes in grapes and wines: occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr Rev Food Sci Food Saf. 2020;19(1):247–81.

    Article  Google Scholar 

  • LP information Inc. Global paclitaxel market growth 2021–2026. 2021.

    Google Scholar 

  • Lyu X, Lee J, Chen WN. Potential natural food preservatives and their sustainable production in yeast: Terpenoids and polyphenols. J Agric Food Chem. 2019;67(16):4397–417.

    Article  CAS  Google Scholar 

  • Markets and Markets. Squalene market by source type (animal source (shark liver oil), vegetable source (olive oil, palm oil, Amaranth oil), biosynthetic (GM yeast]), end-use industry (cosmetics, food, and pharmaceuticals), and region – Global Forecast to 2025. 2020.

    Google Scholar 

  • Mateo JJ, Jiménez M. Monoterpenes in grape juice and wines. J Chromatogr A. 2000;881(1–2):557–67.

    Article  CAS  Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature. 2016;537(7622):694–7.

    Article  CAS  Google Scholar 

  • Miguel MG. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules. 2010;15(12):9252–87.

    Article  Google Scholar 

  • Mosquera MEG, Jiménez G, Tabernero V, Vinueza-Vaca J, García-Estrada C, Kosalková K, et al. Terpenes and terpenoids: building blocks to produce biopolymers. Sustain Chem. 2021;2:467–92.

    Article  CAS  Google Scholar 

  • Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev. 2015;14(4):675–90.

    Article  CAS  Google Scholar 

  • Neis FA, de Costa F, de Araújo AT, Fett JP, Fett-Neto AG. Multiple industrial uses of non-wood pine products. Ind Crop Prod. 2019;130:248–58.

    Article  CAS  Google Scholar 

  • Ninkuu V, Zhang L, Yan J, Fu Z, Yang T, Zeng H. Biochemistry of terpenes and recent advances in plant protection. Int J Mol Sci. 2021;22(11)5710:1–22

    Google Scholar 

  • Nowrouzi B, Li RA, Walls LE, D’Espaux L, Malcı K, Liang L, et al. Enhanced production of taxadiene in Saccharomyces cerevisiae. Microb Cell Factories. 2020;19(1):200.

    Article  CAS  Google Scholar 

  • OECD-FAO. Agricultural outlook 2015–2024. Paris: OECD; 2015.

    Google Scholar 

  • Ouassou H, Zahidi T, Bouknana S, Bouhrim M, Mekhfi H, Ziyyat A, et al. Inhibition of α -glucosidase, intestinal glucose absorption, and antidiabetic properties by Caralluma europaea. Evid-based Complement Altern Med. 2018;2018

    Google Scholar 

  • Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. 2014;12(5):355–67.

    Article  CAS  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–32.

    Article  CAS  Google Scholar 

  • Paramasivan K, Mutturi S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol. 2017;37(8):974–89.

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun. 2011;483:1–8

    Google Scholar 

  • Perveen S, Al/Taweel A. Terpenes and terpenoids. In: Intech 2016. p. 13.

    Google Scholar 

  • Phulara SC, Pandey S, Jha A, Chauhan PS, Gupta P, Shukla V. Hemiterpene compound, 3,3-dimethylallyl alcohol promotes longevity and neuroprotection in Caenorhabditis elegans. GeroScience. 2021;43(2):791–807.

    Article  CAS  Google Scholar 

  • Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018;220(3):692–702.

    Article  Google Scholar 

  • Popa O, Bəbeanu NE, Popa I, Niţə S, Dinu-Pârvu CE. Methods for obtaining and determination of squalene from natural sources. Biomed Res Int. 2015;367202:1–10

    Google Scholar 

  • Pour PM, Behzad S, Asgari S, Khankandi HP, Farzaei MH. Sesterterpenoids. In: Recent advances in natural products analysis. Amsterdam, Elsevier; 2020. p. 347–91.

    Google Scholar 

  • Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J Integr Plant Biol. 2021;63(7):1211–26.

    Article  CAS  Google Scholar 

  • Research Reports World. Global paclitaxel industry research report, growth trends and competitive analysis 2021–2027. 2021.

    Google Scholar 

  • Sarria-Villa RA, Gallo-Corredor JA, Benítez-Benítez R. Characterization and determination of the quality of rosins and turpentines extracted from Pinus oocarpa and Pinus patula resin. Heliyon. 2021;7(8):e07834.

    Article  CAS  Google Scholar 

  • Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb Cell Factories. 2012;117:1–16

    Google Scholar 

  • Schwab W, Fuchs C, Huang FC. Transformation of terpenes into fine chemicals. Eur J Lipid Sci Technol. 2013;115(1):3–8.

    Article  CAS  Google Scholar 

  • Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2015;7(2):1–20

    Google Scholar 

  • Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, et al. Monoterpenes and their derivatives as agents for cardiovascular disease management: a systematic review and meta-analysis. Phytomedicine. 2021;88:153451.

    Article  CAS  Google Scholar 

  • Silvestre AJD, Gandini A. Terpenes: major sources, properties and applications. In: Monomers, polymers and composites from renewable resources Elsevier; Amsterdam, 2008. p. 17–38.

    Google Scholar 

  • Stone NL, Murphy AJ, England TJ, O’Sullivan SE. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br J Pharmacol. 2020;177(19):4330–52.

    CAS  Google Scholar 

  • Szakiel A, Pączkowski C, Pensec F, Bertsch C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev 2012;11(2–3):263–84.

    Google Scholar 

  • Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol. 2015:63–106.

    Google Scholar 

  • Tirapelli CR, Ambrosio SR, da Costa FB, de Oliveira AM. Diterpenes: a therapeutic promise for cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2008;3(1):1–8.

    Article  CAS  Google Scholar 

  • Tirapelli CR, Ambrosio SR, De Oliveira AM, Tostes RC. Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia. 2010;81(7):690–702.

    Article  CAS  Google Scholar 

  • Tong Y, Zhang M, Su P, Zhao Y, Wang X, Zhang X, et al. Cloning and functional characterization of an isopentenyl diphosphate isomerase gene from Tripterygium wilfordii. Biotechnol Appl Biochem. 2016;63(6):863–9.

    Article  CAS  Google Scholar 

  • Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, et al. Semisynthetic artemisinin, the chemical path to industrial production. Org Process Res Dev. 2014;18(3):417–22.

    Article  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs PD. world population prospects 2019. Highlights 2019. ST/ESA/SER.A/423.

    Google Scholar 

  • Van Bavel J. The world population explosion: causes, backgrounds and -projections for the future. Facts, Views Vis ObGyn. 2013;5(4):281–91.

    Google Scholar 

  • van der Linden A, Reichel A. Bio-waste in Europe — turning challenges into opportunities. EEA Report No 04/2020. Copenhangen; 2020.

    Google Scholar 

  • Wang L, Yang B, Lin XP, Zhou XF, Liu Y. Sesterterpenoids. Nat Prod Rep. 2013;30(3):455–73.

    Article  CAS  Google Scholar 

  • Wang J, Zhu L, Li Y, Xu S, Jiang W, Liang C, et al. Enhancing Geranylgeraniol production by metabolic engineering and utilization of Isoprenol as a substrate in Saccharomyces cerevisiae. J Agric Food Chem. 2021;69(15):4480–9.

    Article  CAS  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A. 2012;109(3):111–118

    Google Scholar 

  • White NJ. Qinghaosu (artemisinin): The price of success. Science (80-). 2008;320(5874):330–4.

    Article  CAS  Google Scholar 

  • Xiao H, Zhang Y, Wang M. Discovery and engineering of cytochrome P450s for Terpenoid biosynthesis. Trends Biotechnol. 2019;37:618–31.

    Google Scholar 

  • Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Rep. 2021;23:101040.

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev. 2017;71:475–501.

    Article  CAS  Google Scholar 

  • Zhang P, Fuentes S, Siebert T, Krstic M, Herderich M, Barlow EWR, et al. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes. Food Chem. 2016;204:463–474

    Google Scholar 

  • Zhang Y, Nielsen J, Liu Z. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Res. 2017;17(8):1–11.

    Article  Google Scholar 

  • Zhang X, Liu X, Meng Y, Zhang L, Qiao J, Zhao GR. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochem Eng J. 2021;176:108155:1–10

    Google Scholar 

  • Zhao J, Li C, Zhang Y, Shen Y, Hou J, Bao X. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb Cell Factories. 2017;16:1–11

    Google Scholar 

Download references

Acknowledgments

This work was supported by Amyris Bio Products Portugal Unipessoal Lda and Escola Superior de Biotecnologia – Universidade Católica Portuguesa through Alchemy project- Capturing high value from industrial fermentation bio products (POCI-01 − 0247-FEDER-027578). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lígia Pimentel or Erdem Carsanba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pimentel, L. et al. (2022). Microbial Production of Terpenes. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics