Skip to main content

A Probabilistic Deontic Logic

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12897))

  • 905 Accesses

Abstract

In this article, we introduce a logic for reasoning about probability of normative statements. We present its syntax and semantics, describe the corresponding class of models, provide an axiomatization for this logic and prove that the axiomatization is sound and complete. We also prove that our logic is decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We might introduce \(\varDelta ^c\) and \(\varDelta ^c_\phi \) as the sets of all consistent formulas from \(\varDelta \) and \(\varDelta _\phi \), respectively, but since we will still have \(\vdash w(\phi )= \sum _{\delta \in \varDelta _\phi ^c} w(\delta )\), we prefer not to burden the notation with the superscripts in the rest of the proof, and we assume that we do not have inconsistent formulas in \(\varDelta \).

References

  1. Boella, G., van der Torre, L.W.N., Verhagen, H.: Introduction to normative multiagent systems. Comput. Math. Organ. Theor. 12(2–3), 71–79 (2006). https://doi.org/10.1007/s10588-006-9537-7

  2. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980). https://doi.org/10.1017/CBO9780511621192

    Article  MathSciNet  MATH  Google Scholar 

  3. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)

    Article  MathSciNet  Google Scholar 

  4. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Computat. 87(1), 78–128 (1990)

    Google Scholar 

  5. Frisch, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1994)

    Article  MathSciNet  Google Scholar 

  6. van der Hoek, W.: Some considerations on the logic pfd. J. Appl. Non Class. Logics 7(3), 287–307 (1997)

    Article  Google Scholar 

  7. Horty, J.F.: Agency and Deontic Logic. Oxford University Press (2001)

    Google Scholar 

  8. Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen London, New York (1984)

    MATH  Google Scholar 

  9. Parent, X., Van Der Torre, L.: Introduction to Deontic Logic and Normative Systems. Texts in Logic and Reasoning. College Publications (2018). https://books.google.nl/books?id=IyUYwQEACAAJ

  10. Riveret, R., Oren, N., Sartor, G.: A probabilistic deontic argumentation framework. Int. J. Approximate Reason. 126, 249–271 (2020)

    Article  MathSciNet  Google Scholar 

  11. Sarathy, V., Scheutz, M., Malle, B.F.: Learning behavioral norms in uncertain and changing contexts. In: 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000301–000306 (2017). https://doi.org/10.1109/CogInfoCom.2017.8268261

  12. Savic, N., Doder, D., Ognjanovic, Z.: Logics with lower and upper probability operators. Int. J. Approx. Reason. 88, 148–168 (2017)

    Article  MathSciNet  Google Scholar 

  13. Tomic, S., Pecora, F., Saffiotti, A.: Learning normative behaviors through abstraction. In: Giacomo, G.D. (eds.) 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August–8 September 2020, Santiago de Compostela, Spain, Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 1547–1554. IOS Press (2020). https://doi.org/10.3233/FAIA200263

  14. von Wrigth, G.H.: I. Deontic logic. Mind LX(237), 1–15 (1951). https://doi.org/10.1093/mind/LX.237.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Doder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Wit, V., Doder, D., Meyer, J.J. (2021). A Probabilistic Deontic Logic. In: Vejnarová, J., Wilson, N. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2021. Lecture Notes in Computer Science(), vol 12897. Springer, Cham. https://doi.org/10.1007/978-3-030-86772-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86772-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86771-3

  • Online ISBN: 978-3-030-86772-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics