Abstract
We survey recent research bridging algebraic geometry, commutative algebra and combinatorics, highlighting open questions, problems and conjectures of current interest. For expositional simplicity and focus, the emphasis is on homogeneous ideals of fat point subschemes of projective space. The survey is structured into three parts, each part starting with a question, conjecture or result of David Eisenbud. The first part is on the computability of semi-effectivity, the second part is on the containment problem of symbolic powers of ideals of fat points in their ordinary powers, and the third part is on splitting types of rank 2 bundles on rational curves.
Dedicated to David Eisenbud, on the occasion of his 75th birthday.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
T. Abe and A. Dimca. On complex supersolvable line arrangements, J. Algebra 552 (2020) 38–51.
S. Akesseh. Ideal containments under flat extensions, J. Algebra 492 (2017) 44–51.
S. Akesseh. Ideal containments under flat extensions and interpolation on linear systems in \( {\mathbb {P}}^2\), University of Nebraska PhD thesis (2017).
M.-G. Ascenzi. The restricted tangent bundle of a rational curve in \( {\mathbb {P}}^2\), Comm. Algebra 16 (1988), no. 11, 2193–2208.
M.-G. Ascenzi. The singular points of a rational plane curve and its restricted tangent bundle, J. Algebra 532 (2019) 2–54.
E. Ballico, G. Favacchio, E. Guardo and L. Milazzo. Steiner systems and configurations of points, Designs, Codes and Cryptography 89 (2021) 199–219.
Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A.L. Knutsen, W. Syzdek and T. Szemberg. A primer on Seshadri constants, pp. 33–70, in: Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22–24 2008. Contemporary Mathematics vol. 496, 2009, eds. D. J. Bates, G-M. Besana, S. Di Rocco, and C. W. Wampler, 362 pp.
Th. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora and T. Szemberg. Bounded Negativity and Arrangements of Lines, International Math. Res. Notices (2015) 9456–9471.
Th. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu and T. Szemberg. Negative Curves on Symmetric Blowups of the Projective Plane, Resurgences, and Waldschmidt Constants, International Math. Res. Notices (2019) 7459–7514.
Th. Bauer, B. Harbourne, A.L. Knutsen, A. Küronya, S. Müller-Stach and T. Szemberg. Negative curves on algebraic surfaces, Duke Math. J., Vol. 162, No. 10, 2013, 1877–1894.
Th. Bauer, B. Harbourne, A. Küronya and M. Nickel. Bounded volume denominators and bounded negativity, International Math. Res. Notices, 2019, rnz335 (https://doi.org/10.1093/imrn/rnz335).
Th. Bauer, B. Harbourne, J. Roé and T. Szemberg. The Halphen cubics of order two, Collectanea Mathematica 68:3 (2017) 339–357.
S. Bisui, E. Grifo, H.T. Ha, T.T. Nguyen. Demailly’s Conjecture and the Containment Problem, preprint 2020 (arXiv:2009.05022).
S. Bisui, E. Grifo, H.T. Ha, T.T. Nguyen. Chudnovsky’s Conjecture and the stable Harbourne-Huneke containment, preprint 2020 (arXiv:2004.11213)
S. Bisui, H.T. Ha, A.V. Jayanthan and A.C. Thomas. Resurgence numbers of fiber products of projective schemes, Collect. Math. 2020 (https://doi.org/10.1007/s13348-020-00302-5).
C. Bocci. Special effect varieties in higher dimension, Collect. Math. 56:3 (2005) 299–326.
C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl A and T. Vu. The Waldschmidt constant for squarefree monomial ideals, J. Alg. Combinatorics 44:4 (2016) 875–904.
C. Bocci, S. Cooper and B. Harbourne. Containment results for ideals of various configurations of points in \( {\mathbb {P}}^N\), J. Pure Appl. Alg. 218 (2014) 65–75.
C. Bocci and B. Harbourne. Comparing Powers and Symbolic Powers of Ideals, J. Algebraic Geometry, 19 (2010), 399–417.
C. Bocci and B. Harbourne. The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138:4 (2010) 1175–1190.
M.C. Brambilla, O. Dumitrescu and E. Postinghel. On a notion of speciality of linear systems in \( {\mathbb {P}}^n\), Trans. Amer. Math. Soc. 367:8 (2015) 5447–5473.
E. Carlini, B. Harbourne, H.T. Hà and A. Van Tuyl. Ideals of powers and powers of ideals: Intersecting Algebra, Geometry, and Combinatorics, Lecture Notes of the Unione Matematica Italiana, book series UMILN, volume 27, 2020, pp. 136.
M.V. Catalisano, E. Guardo and Y. Shin. The Waldschmidt constant of special k-configurations in \( {\mathbb {P}}^n\), J. Pure Appl. Algebra 224:10 (2020) 106341.
Y.-L. Chang and S.-Y. Jow. Demailly’s conjecture on Waldschmidt constants for sufficiently many very general points in \( {\mathbb {P}}^n\), J. Number Theory 207 (2020) 138–144.
R. Cheng, and R. van Dobben de Bruyn, “Unbounded negativity on rational surfaces in positive characteristic” Journal für die reine und angewandte Mathematik (Crelles Journal), 2021. https://doi.org/10.1515/crelle-2021-0078
G.V. Chudnovsky. Singular points on complex hypersurfaces and multidimensional Schwarz Lemma, Séminaire de Théorie des Nombres, Paris 1979–80, Séminaire Delange-Pisot-Poitou, Progress in Math vol. 12, M-J Bertin, editor, Birkhäuser, Boston-Basel-Stutgart (1981).
C. Ciliberto, A.L. Knutsen, J. Lesieutre, V. Lozovanu, R. Miranda, Y. Mustopa, D. Testa. A few questions about curves on surfaces, Rend. Circ. Mat. Palermo (2) 66 (2017) 195–204.
C. Ciliberto, R. Miranda. Nagata’s conjecture for a square number of points, Ric. Mat. 55 (2006) 71–78.
D. Cook II, B. Harbourne, J. Migliore and U. Nagel. Line arrangements and configurations of points with an unexpected geometric property, Compos. Math. 154 (2018) 2150–2194.
S. Cooper and S. Hartke. The Alpha Problem and Line Count Configurations, J. Algebra 407 (2014) 224–245.
D. Cox, T. W. Sederburg and F. Chen. The moving line ideal basis of planar rational curves, Computer Aided Geometric Design 15 (1998) 803–827.
M. Cuntz. Simplicial arrangements with up to 27 lines, Discrete & Computational Geometry 48 (2012) 682–701.
M. Cuntz. A greedy algorithm to compute arrangements of lines in the projective plane, preprint 2020 (arXiv:2006.14431).
A. Czapliński, A. Główka–Habura, G. Malara, M. Lampa–Baczyńska, P. Łuszcz–Świdecka, P. Pokora and J. Szpond. A counterexample to the containment I(3) ⊂ I2 over the reals, Advances in Geometry 16:1 (2016) 77–82.
H. Dao, A. De Stefani, E. Grifo, C. Huneke and L. Núñez-Betancourt. Symbolic powers of ideals, Springer Proceedings in Mathematics & Statistics. Springer, 2017.
J.-P. Demailly. Formules de Jensen en plusieurs variables et applications arithmétiques, Bull. Soc. Math. France 110 (1982), 75–102.
A. Denkert and M. Janssen Containment problem for points on a reducible conic in \( {\mathbb {P}}^2\), J. Algebra 394 (2013) 120–138.
R. Di Gennaro, G. Ilardi and J. Vallès. Singular hypersurfaces characterizing the Lefschetz properties, J. London Math. Soc. (2) 89 (2014), no. 1, 194–212.
M. Di Marca, G. Malara, A. Oneto. Unexpected curves arising from special line arrangements, J. Algebraic Combin. 51:2 (2020) 171–194.
A. Dimca. Unexpected curves in \( {\mathbb {P}}^2\), line arrangements, and minimal degree of Jacobian relations, preprint 2019 (arXiv:1911.07703)
M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig, Asymptotic resurgence via integral closures, Trans. Amer. Math. Soc. 372 (2019), 6655–6676.
M. DiPasquale and B. Drabkin, On resurgence via asymptotic resurgence Journal of Algebra DOI: 10.1016/j.jalgebra.2021.07.021
B. Drabkin and A. Seceleanu. Singular loci of reflection arrangements and the containment problem. Math. Z. 299, 867–895 (2021). https://doi.org/10.1007/s00209-021-02701-1
M. Dumnicki. Containments of symbolic powers of ideals of generic points in \( {\mathbb {P}}^3\), Proc. Amer. Math. Soc. 143(2) (2015) 513–530.
M. Dumnicki, Ł. Farnik, B. Harbourne, G. Malara, J. Szpond, H. Tutaj-Gasińska. A matrixwise approach to unexpected hypersurfaces, Linear Algebra and its Applications 592 (2020) 113–133.
M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg and H. Tutaj-Gasińska. Resurgences for ideals of special point configurations in \( {\mathbb {P}}^N\) coming from hyperplane arrangements, J. Algebra 443 (2015) 383–394.
M. Dumnicki, B. Harbourne, J. Roé, T. Szemberg and H. Tutaj-Gasińska. Unexpected surfaces singular on lines in \( {\mathbb {P}}^3\), Eur. J. Math. 7 (2021) 570–590.
M. Dumnicki, D. Harrer and J. Szpond. On absolute linear Harbourne constants, Finite Fields Appl. 51 (2018) 371–387.
M. Dumnicki, T. Szemberg, H. Tutaj-Gasińska. Counterexamples to the I(3) ⊂ I2 containment, J. Algebra 393 (2013) 24–29.
M. Dumnicki and H. Tutaj-Gasińska. A containment result in \( {\mathbb {P}}^n\) and the Chudnovsky Conjecture, Proc. Amer. Math. Soc. 145 (2017) 3689–3694.
L. Ein, R. Lazarsfeld, K.E. Smith. Uniform behavior of symbolic powers of ideals. Invent. Math., 144 (2001) 241–252.
D. Eisenbud and B. Mazur. Evolutions, symbolic squares, and Fitting ideals, J. Reine Angew. Math. 488 (1997) 189–201.
D. Eisenbud and A. Van de Ven. On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981) no. 4, 453–463.
H. Esnault and E. Viehweg. Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263:1 (1983) 75–86.
L. Evain. Computing limit linear series with infinitesimal methods, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 6, 1947–1974.
D. Faenzi and J. Vallès. Logarithmic bundles and line arrangements, an approach via the standard construction, J. Lond. Math. Soc. (2) 90 (2014) no. 3, 675–694.
Ł. Farnik, F. Galuppi, L. Sodomaco et al. On the unique unexpected quartic in \( {\mathbb {P}}^2\). J Algebr Comb 53, 131–146 (2021). https://doi.org/10.1007/s10801-019-00922-6
G. Favacchio, E. Guardo, B. Harbourne and J. Migliore, Expecting the unexpected: quantifying the persistence of unexpected hypersurfaces, to appear, Adv. Math. (arXiv:2001.10366).
L. Fouli, P. Mantero and Y. Xie. Chudnovsky’s Conjecture for very general points in \( {\mathbb {P}}^N_k\), J. Algebra 498 (2018) 211–227.
A. Gimigliano. On linear systems of plane curves. Thesis, Queen’s University, Kingston, (1987).
A. Gimigliano, B. Harbourne and M. Idà. On plane rational curves and the splitting of the tangent bundle, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XII (2013), 587–621
A. Gimigliano, B. Harbourne and M. Idà. Betti numbers for fat point ideals in the plane: a geometric approach, Trans. Amer. Math. Soc. 361 (2009), 1103–1127.
E. Grifo. A stable version of Harbourne’s conjecture and the containment problem for space monomial curves, J. Pure Appl. Algebra 224:12 (2020) 106435.
E. Grifo, C. Huneke and V. Mukundan. Expected resurgences and symbolic powers of ideals, J. London Math. Soc. 102:2 (2020) 453–469 (https://doi.org/10.1112/jlms.12324).
B. Grünbaum. A catalogue of simplicial arrangements in the real projective plane, Ars Mathematica Contemporanea 2 (2009) 1–25.
E. Guardo, B. Harbourne and A. Van Tuyl. Asymptotic resurgences for ideals of positive dimensional subschemes of projective space, Advances in Mathematics 246 (2013) 114–127.
E. Guardo, B. Harbourne and A. Van Tuyl. Symbolic powers versus regular powers of ideals of general points in \( {\mathbb {P}}^1\times {\mathbb {P}}^1\), Canadian J. Math. 65:4 (2013) 823–842.
K. Hanumanthu and B. Harbourne. Real and complex supersolvable line arrangements in the projective plane, J. Alg. Comb. (2020) (https://doi.org/10.1007/s10801-020-00987-8).
B. Harbourne. Asymptotics of linear systems, with connections to line arrangements, in: Phenomenological Approach to Algebraic Geometry, Banach Center Publications, 116 (2018), 87–135 (Proceedings of 2016 miniPAGES Conf. Proc., Warsaw, Poland, (BCSim-2016-s02)).
B. Harbourne. Global aspects of the geometry of surfaces, Ann. Univ. Paed. Cracov. Stud. Math. 9 (2010), 5–41.
B. Harbourne. The geometry of rational surfaces and Hilbert functions of points in the plane. Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6 Amer. Math. Soc., Providence, RI, (1986) 95–111.
B. Harbourne. Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985) 213–226.
B. Harbourne. Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349, 1191–1208 (1997).
B. Harbourne and C. Huneke. Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28, No.3 (Special Issue-2013) 311–330.
B. Harbourne, J. Kettinger, F. Zimmitti. Extreme values of the resurgence for homogeneous ideals in polynomial rings, to appear, J. Pure Appl. Alg. (2021) (arXiv:2005.05282).
B. Harbourne, J. Migliore, U. Nagel and Z. Teitler. Unexpected hypersurfaces and where to find them, Michigan Math. J. 70 (2021) 301–339.
B. Harbourne, J. Migliore and H. Tutaj-Gasińska. New constructions of unexpected hypersurfaces in \( {\mathbb {P}}^n\). Rev Mat Complut 34, 1–18 (2021). https://doi.org/10.1007/s13163-019-00343-w
B. Harbourne and A. Seceleanu. Containment Counterexamples for ideals of various configurations of points in \( {\mathbb {P}}^N\), J. Pure Appl. Alg. 219 (4), 2015, 1062–1072.
R. Hartshorne. Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
A. Hirschowitz. Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques. J. Reine Angew. Math. 397 (1989) 208–213.
M. Hochster and C. Huneke. Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147 (2002), no. 2, 349–369.
L. Hunt. Some Recent Results in the Study of Quintic and Sextic Curves, Masters Thesis, University of Wisconsin, 1922 (available on Google Books).
A. Iarrobino. Inverse system of a symbolic power, III. Thin algebras and fat points, Compos. Math. 108:3 (1997) 319–356.
I.B. Jafarloo and G. Zito. On the containment problem for fat points, to appear, J. Commut. Algebra (arXiv:1802.10178).
F. Klein. Über die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. (14) (1879) 428–471.
A. Laface and L. Ugaglia. A conjecture on special linear systems of \( {\mathbb {P}}^3\), Rend. Sem. Mat. Univ. Politec. Torino 63:1 (2005) 107–110.
A. Laface and L. Ugaglia. On a class of special linear systems of \( {\mathbb {P}}^3\), Trans. Amer. Math. Soc. 358:12 (2006) 5485–5500.
G. Malara, T. Szemberg and J. Szpond. On a conjecture of Demailly and new bounds on Waldschmidt constants in \( {\mathbb {P}}^N\), J. Number Theory 189 (2018) 211–219.
S. Marchesi and J. Vallès. Triangular arrangements on the projective plane, preprint 2019 (arXiv:1903.08885).
M. Nagata. On the 14-th problem of Hilbert, Amer. J. Math., 81 (1959) 766–772.
M. Nagata. On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 33 (1960), 271–293.
U. Nagel and W. Trok. Interpolation and the weak Lefschetz property, Trans. Amer. Math. Soc. 372 (2019) 8849–8870.
P. Pokora. Harbourne constants and arrangements of lines on smooth hypersurfaces in \( {\mathbb {P}}^3( {\mathbb {C}})\), Taiwan J. Math. 20(1): 25–31 (2016).
P. Pokora and J. Roé. The 21 reducible polars of Klein’s quartic, Experimental Mathematics 2019 (https://doi.org/10.1080/10586458.2018.1488155).
P. Pokora and J. Roé. Harbourne constants, pull-back clusters and ramified morphisms, Results Math (2019) 74:109 (https://doi.org/10.1007/s00025-019-1031-x).
J. Roé. Maximal rank for schemes of small multiplicity by Évain’s differential Horace method, Trans. Amer. Math. Soc. 366 (2014), 857–874.
X. Roulleau. Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Int. Math. Res. Not. 2017 (2017), no. 8, 2480–2496.
X. Roulleau and G. Urzuá. Chern slopes of simply connected complex surfaces of general type, Ann. Math. 182 (2015) 287–306.
T. Sederburg, R. Goldman and H. Du. Implicitizing rational curves by the method of moving algebraic curves, J. Symb. Comput. (1997) 23 153–175.
T. Sederberg, T. Saito, D. Qi, K. Klimaszewski. Curve implicitization using moving lines, Computer Aided Geometric Design 11 (1994), 687–706.
B. Segre. Alcune questioni su insiemi finiti di punti in geometria algebrica. Atti Convegno Intern. di Geom. Alg. di Torino, (1961), 15–33.
H. Skoda. Estimations L2 pour l’opérateur \(\widehat {\partial }\) et applications arithmétiques. Lecture Notes Math. 578, Springer, 1977, 314–323.
J. Szpond. On linear Harbourne constants, British Journal of Mathematics & Computer Science 8(4) (2015) 286–297.
J. Szpond. Unexpected hypersurfaces with multiple fat points, J. Symb. Comput. (2020) (https://doi.org/10.1016/j.jsc.2020.07.018).
J. Szpond. Unexpected curves and Togliatti-type surfaces, Math. Nach. 293 (2020) 158–168.
J. Szpond. Fermat-type arrangements, In: D. Stamate and T. Szemberg (eds), Combinatorial Structures in Algebra and Geometry. NSA 2018. Springer Proceedings in Mathematics & Statistics 331 (2020) 161–182.
Ş.O. Tohǎneanu. A computational criterion for supersolvability of line arrangements, Ars Combin.117 (2014) 217–223.
Ş.O. Tohǎneanu and Y. Xie. On the containment problem for fat points ideals and Harbourne’s conjecture, Proc. Amer. Math. Soc. 148 (2020) 2411–2419.
W. Trok. Projective duality, unexpected hypersurfaces and logarithmic derivations of hyperplane arrangements, preprint 2020 (arXiv:2003.02397).
M. Waldschmidt. Propriétés arithmétiques de fonctions de plusieurs variables II. Séminaire P. Lelong (Analyse), 1975–76, Lecture Notes Math. 578, Springer-Verlag, 1977, 108–135.
M. Waldschmidt. Nombres transcendants et groupes algébriques, Astérisque 69/70, Socéte Mathématiqué de France, 1979.
A. Wiman. Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Ann.(48) (1896) 195–240.
Acknowledgements
The author was partially supported by Simons Foundation grant #524858. The author thanks everyone who looked over an early draft of this survey, and in particular M.-G. Ascenzi, S. Cooper, A. Dimca, E. Guardo, T. Ha, J. Migliore, J. Roé, A. Seceleanu, T. Szemberg, A. Van Tuyl and Y. Xie for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Harbourne, B. (2021). Algebraic Geometry, Commutative Algebra and Combinatorics: Interactions and Open Problems. In: Peeva, I. (eds) Commutative Algebra. Springer, Cham. https://doi.org/10.1007/978-3-030-89694-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-89694-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89693-5
Online ISBN: 978-3-030-89694-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)