Skip to main content

Algebraic Geometry, Commutative Algebra and Combinatorics: Interactions and Open Problems

  • Chapter
  • First Online:
Commutative Algebra
  • 2029 Accesses

Abstract

We survey recent research bridging algebraic geometry, commutative algebra and combinatorics, highlighting open questions, problems and conjectures of current interest. For expositional simplicity and focus, the emphasis is on homogeneous ideals of fat point subschemes of projective space. The survey is structured into three parts, each part starting with a question, conjecture or result of David Eisenbud. The first part is on the computability of semi-effectivity, the second part is on the containment problem of symbolic powers of ideals of fat points in their ordinary powers, and the third part is on splitting types of rank 2 bundles on rational curves.

Dedicated to David Eisenbud, on the occasion of his 75th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Abe and A. Dimca. On complex supersolvable line arrangements, J. Algebra 552 (2020) 38–51.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Akesseh. Ideal containments under flat extensions, J. Algebra 492 (2017) 44–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Akesseh. Ideal containments under flat extensions and interpolation on linear systems in \( {\mathbb {P}}^2\), University of Nebraska PhD thesis (2017).

    Google Scholar 

  4. M.-G. Ascenzi. The restricted tangent bundle of a rational curve in \( {\mathbb {P}}^2\), Comm. Algebra 16 (1988), no. 11, 2193–2208.

    Google Scholar 

  5. M.-G. Ascenzi. The singular points of a rational plane curve and its restricted tangent bundle, J. Algebra 532 (2019) 2–54.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Ballico, G. Favacchio, E. Guardo and L. Milazzo. Steiner systems and configurations of points, Designs, Codes and Cryptography 89 (2021) 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  7. Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A.L. Knutsen, W. Syzdek and T. Szemberg. A primer on Seshadri constants, pp. 33–70, in: Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22–24 2008. Contemporary Mathematics vol. 496, 2009, eds. D. J. Bates, G-M. Besana, S. Di Rocco, and C. W. Wampler, 362 pp.

    Google Scholar 

  8. Th. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora and T. Szemberg. Bounded Negativity and Arrangements of Lines, International Math. Res. Notices (2015) 9456–9471.

    Google Scholar 

  9. Th. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu and T. Szemberg. Negative Curves on Symmetric Blowups of the Projective Plane, Resurgences, and Waldschmidt Constants, International Math. Res. Notices (2019) 7459–7514.

    Google Scholar 

  10. Th. Bauer, B. Harbourne, A.L. Knutsen, A. Küronya, S. Müller-Stach and T. Szemberg. Negative curves on algebraic surfaces, Duke Math. J., Vol. 162, No. 10, 2013, 1877–1894.

    Article  MathSciNet  MATH  Google Scholar 

  11. Th. Bauer, B. Harbourne, A. Küronya and M. Nickel. Bounded volume denominators and bounded negativity, International Math. Res. Notices, 2019, rnz335 (https://doi.org/10.1093/imrn/rnz335).

  12. Th. Bauer, B. Harbourne, J. Roé and T. Szemberg. The Halphen cubics of order two, Collectanea Mathematica 68:3 (2017) 339–357.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Bisui, E. Grifo, H.T. Ha, T.T. Nguyen. Demailly’s Conjecture and the Containment Problem, preprint 2020 (arXiv:2009.05022).

    Google Scholar 

  14. S. Bisui, E. Grifo, H.T. Ha, T.T. Nguyen. Chudnovsky’s Conjecture and the stable Harbourne-Huneke containment, preprint 2020 (arXiv:2004.11213)

    Google Scholar 

  15. S. Bisui, H.T. Ha, A.V. Jayanthan and A.C. Thomas. Resurgence numbers of fiber products of projective schemes, Collect. Math. 2020 (https://doi.org/10.1007/s13348-020-00302-5).

  16. C. Bocci. Special effect varieties in higher dimension, Collect. Math. 56:3 (2005) 299–326.

    MathSciNet  MATH  Google Scholar 

  17. C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl A and T. Vu. The Waldschmidt constant for squarefree monomial ideals, J. Alg. Combinatorics 44:4 (2016) 875–904.

    Google Scholar 

  18. C. Bocci, S. Cooper and B. Harbourne. Containment results for ideals of various configurations of points in \( {\mathbb {P}}^N\), J. Pure Appl. Alg. 218 (2014) 65–75.

    Google Scholar 

  19. C. Bocci and B. Harbourne. Comparing Powers and Symbolic Powers of Ideals, J. Algebraic Geometry, 19 (2010), 399–417.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Bocci and B. Harbourne. The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138:4 (2010) 1175–1190.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.C. Brambilla, O. Dumitrescu and E. Postinghel. On a notion of speciality of linear systems in \( {\mathbb {P}}^n\), Trans. Amer. Math. Soc. 367:8 (2015) 5447–5473.

    Google Scholar 

  22. E. Carlini, B. Harbourne, H.T. Hà and A. Van Tuyl. Ideals of powers and powers of ideals: Intersecting Algebra, Geometry, and Combinatorics, Lecture Notes of the Unione Matematica Italiana, book series UMILN, volume 27, 2020, pp. 136.

    Google Scholar 

  23. M.V. Catalisano, E. Guardo and Y. Shin. The Waldschmidt constant of special k-configurations in \( {\mathbb {P}}^n\), J. Pure Appl. Algebra 224:10 (2020) 106341.

    Google Scholar 

  24. Y.-L. Chang and S.-Y. Jow. Demailly’s conjecture on Waldschmidt constants for sufficiently many very general points in \( {\mathbb {P}}^n\), J. Number Theory 207 (2020) 138–144.

    Google Scholar 

  25. R. Cheng, and R. van Dobben de Bruyn, “Unbounded negativity on rational surfaces in positive characteristic” Journal für die reine und angewandte Mathematik (Crelles Journal), 2021. https://doi.org/10.1515/crelle-2021-0078

  26. G.V. Chudnovsky. Singular points on complex hypersurfaces and multidimensional Schwarz Lemma, Séminaire de Théorie des Nombres, Paris 1979–80, Séminaire Delange-Pisot-Poitou, Progress in Math vol. 12, M-J Bertin, editor, Birkhäuser, Boston-Basel-Stutgart (1981).

    Google Scholar 

  27. C. Ciliberto, A.L. Knutsen, J. Lesieutre, V. Lozovanu, R. Miranda, Y. Mustopa, D. Testa. A few questions about curves on surfaces, Rend. Circ. Mat. Palermo (2) 66 (2017) 195–204.

    Google Scholar 

  28. C. Ciliberto, R. Miranda. Nagata’s conjecture for a square number of points, Ric. Mat. 55 (2006) 71–78.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Cook II, B. Harbourne, J. Migliore and U. Nagel. Line arrangements and configurations of points with an unexpected geometric property, Compos. Math. 154 (2018) 2150–2194.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Cooper and S. Hartke. The Alpha Problem and Line Count Configurations, J. Algebra 407 (2014) 224–245.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Cox, T. W. Sederburg and F. Chen. The moving line ideal basis of planar rational curves, Computer Aided Geometric Design 15 (1998) 803–827.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Cuntz. Simplicial arrangements with up to 27 lines, Discrete & Computational Geometry 48 (2012) 682–701.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Cuntz. A greedy algorithm to compute arrangements of lines in the projective plane, preprint 2020 (arXiv:2006.14431).

    Google Scholar 

  34. A. Czapliński, A. Główka–Habura, G. Malara, M. Lampa–Baczyńska, P. Łuszcz–Świdecka, P. Pokora and J. Szpond. A counterexample to the containment I(3) ⊂ I2 over the reals, Advances in Geometry 16:1 (2016) 77–82.

    Google Scholar 

  35. H. Dao, A. De Stefani, E. Grifo, C. Huneke and L. Núñez-Betancourt. Symbolic powers of ideals, Springer Proceedings in Mathematics & Statistics. Springer, 2017.

    MATH  Google Scholar 

  36. J.-P. Demailly. Formules de Jensen en plusieurs variables et applications arithmétiques, Bull. Soc. Math. France 110 (1982), 75–102.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Denkert and M. Janssen Containment problem for points on a reducible conic in \( {\mathbb {P}}^2\), J. Algebra 394 (2013) 120–138.

    Google Scholar 

  38. R. Di Gennaro, G. Ilardi and J. Vallès. Singular hypersurfaces characterizing the Lefschetz properties, J. London Math. Soc. (2) 89 (2014), no. 1, 194–212.

    Google Scholar 

  39. M. Di Marca, G. Malara, A. Oneto. Unexpected curves arising from special line arrangements, J. Algebraic Combin. 51:2 (2020) 171–194.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Dimca. Unexpected curves in \( {\mathbb {P}}^2\), line arrangements, and minimal degree of Jacobian relations, preprint 2019 (arXiv:1911.07703)

    Google Scholar 

  41. M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig, Asymptotic resurgence via integral closures, Trans. Amer. Math. Soc. 372 (2019), 6655–6676.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. DiPasquale and B. Drabkin, On resurgence via asymptotic resurgence Journal of Algebra DOI: 10.1016/j.jalgebra.2021.07.021

    Google Scholar 

  43. B. Drabkin and A. Seceleanu. Singular loci of reflection arrangements and the containment problem. Math. Z. 299, 867–895 (2021). https://doi.org/10.1007/s00209-021-02701-1

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Dumnicki. Containments of symbolic powers of ideals of generic points in \( {\mathbb {P}}^3\), Proc. Amer. Math. Soc. 143(2) (2015) 513–530.

    Google Scholar 

  45. M. Dumnicki, Ł. Farnik, B. Harbourne, G. Malara, J. Szpond, H. Tutaj-Gasińska. A matrixwise approach to unexpected hypersurfaces, Linear Algebra and its Applications 592 (2020) 113–133.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg and H. Tutaj-Gasińska. Resurgences for ideals of special point configurations in \( {\mathbb {P}}^N\) coming from hyperplane arrangements, J. Algebra 443 (2015) 383–394.

    Google Scholar 

  47. M. Dumnicki, B. Harbourne, J. Roé, T. Szemberg and H. Tutaj-Gasińska. Unexpected surfaces singular on lines in \( {\mathbb {P}}^3\), Eur. J. Math. 7 (2021) 570–590.

    Google Scholar 

  48. M. Dumnicki, D. Harrer and J. Szpond. On absolute linear Harbourne constants, Finite Fields Appl. 51 (2018) 371–387.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Dumnicki, T. Szemberg, H. Tutaj-Gasińska. Counterexamples to the I(3) ⊂ I2 containment, J. Algebra 393 (2013) 24–29.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Dumnicki and H. Tutaj-Gasińska. A containment result in \( {\mathbb {P}}^n\) and the Chudnovsky Conjecture, Proc. Amer. Math. Soc. 145 (2017) 3689–3694.

    Google Scholar 

  51. L. Ein, R. Lazarsfeld, K.E. Smith. Uniform behavior of symbolic powers of ideals. Invent. Math., 144 (2001) 241–252.

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Eisenbud and B. Mazur. Evolutions, symbolic squares, and Fitting ideals, J. Reine Angew. Math. 488 (1997) 189–201.

    MathSciNet  MATH  Google Scholar 

  53. D. Eisenbud and A. Van de Ven. On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981) no. 4, 453–463.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Esnault and E. Viehweg. Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263:1 (1983) 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Evain. Computing limit linear series with infinitesimal methods, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 6, 1947–1974.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Faenzi and J. Vallès. Logarithmic bundles and line arrangements, an approach via the standard construction, J. Lond. Math. Soc. (2) 90 (2014) no. 3, 675–694.

    Google Scholar 

  57. Ł. Farnik, F. Galuppi, L. Sodomaco et al. On the unique unexpected quartic in \( {\mathbb {P}}^2\). J Algebr Comb 53, 131–146 (2021). https://doi.org/10.1007/s10801-019-00922-6

  58. G. Favacchio, E. Guardo, B. Harbourne and J. Migliore, Expecting the unexpected: quantifying the persistence of unexpected hypersurfaces, to appear, Adv. Math. (arXiv:2001.10366).

    Google Scholar 

  59. L. Fouli, P. Mantero and Y. Xie. Chudnovsky’s Conjecture for very general points in \( {\mathbb {P}}^N_k\), J. Algebra 498 (2018) 211–227.

    Google Scholar 

  60. A. Gimigliano. On linear systems of plane curves. Thesis, Queen’s University, Kingston, (1987).

    MATH  Google Scholar 

  61. A. Gimigliano, B. Harbourne and M. Idà. On plane rational curves and the splitting of the tangent bundle, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XII (2013), 587–621

    Google Scholar 

  62. A. Gimigliano, B. Harbourne and M. Idà. Betti numbers for fat point ideals in the plane: a geometric approach, Trans. Amer. Math. Soc. 361 (2009), 1103–1127.

    Article  MathSciNet  MATH  Google Scholar 

  63. E. Grifo. A stable version of Harbourne’s conjecture and the containment problem for space monomial curves, J. Pure Appl. Algebra 224:12 (2020) 106435.

    Article  MathSciNet  MATH  Google Scholar 

  64. E. Grifo, C. Huneke and V. Mukundan. Expected resurgences and symbolic powers of ideals, J. London Math. Soc. 102:2 (2020) 453–469 (https://doi.org/10.1112/jlms.12324).

  65. B. Grünbaum. A catalogue of simplicial arrangements in the real projective plane, Ars Mathematica Contemporanea 2 (2009) 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  66. E. Guardo, B. Harbourne and A. Van Tuyl. Asymptotic resurgences for ideals of positive dimensional subschemes of projective space, Advances in Mathematics 246 (2013) 114–127.

    Article  MathSciNet  MATH  Google Scholar 

  67. E. Guardo, B. Harbourne and A. Van Tuyl. Symbolic powers versus regular powers of ideals of general points in \( {\mathbb {P}}^1\times {\mathbb {P}}^1\), Canadian J. Math. 65:4 (2013) 823–842.

    Google Scholar 

  68. K. Hanumanthu and B. Harbourne. Real and complex supersolvable line arrangements in the projective plane, J. Alg. Comb. (2020) (https://doi.org/10.1007/s10801-020-00987-8).

  69. B. Harbourne. Asymptotics of linear systems, with connections to line arrangements, in: Phenomenological Approach to Algebraic Geometry, Banach Center Publications, 116 (2018), 87–135 (Proceedings of 2016 miniPAGES Conf. Proc., Warsaw, Poland, (BCSim-2016-s02)).

    Google Scholar 

  70. B. Harbourne. Global aspects of the geometry of surfaces, Ann. Univ. Paed. Cracov. Stud. Math. 9 (2010), 5–41.

    MathSciNet  MATH  Google Scholar 

  71. B. Harbourne. The geometry of rational surfaces and Hilbert functions of points in the plane. Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6 Amer. Math. Soc., Providence, RI, (1986) 95–111.

    Google Scholar 

  72. B. Harbourne. Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985) 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  73. B. Harbourne. Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349, 1191–1208 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  74. B. Harbourne and C. Huneke. Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28, No.3 (Special Issue-2013) 311–330.

    Google Scholar 

  75. B. Harbourne, J. Kettinger, F. Zimmitti. Extreme values of the resurgence for homogeneous ideals in polynomial rings, to appear, J. Pure Appl. Alg. (2021) (arXiv:2005.05282).

    Google Scholar 

  76. B. Harbourne, J. Migliore, U. Nagel and Z. Teitler. Unexpected hypersurfaces and where to find them, Michigan Math. J. 70 (2021) 301–339.

    Article  MathSciNet  MATH  Google Scholar 

  77. B. Harbourne, J. Migliore and H. Tutaj-Gasińska. New constructions of unexpected hypersurfaces in \( {\mathbb {P}}^n\). Rev Mat Complut 34, 1–18 (2021). https://doi.org/10.1007/s13163-019-00343-w

  78. B. Harbourne and A. Seceleanu. Containment Counterexamples for ideals of various configurations of points in \( {\mathbb {P}}^N\), J. Pure Appl. Alg. 219 (4), 2015, 1062–1072.

    Google Scholar 

  79. R. Hartshorne. Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.

    Google Scholar 

  80. A. Hirschowitz. Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques. J. Reine Angew. Math. 397 (1989) 208–213.

    Article  MathSciNet  MATH  Google Scholar 

  81. M. Hochster and C. Huneke. Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147 (2002), no. 2, 349–369.

    Article  MathSciNet  MATH  Google Scholar 

  82. L. Hunt. Some Recent Results in the Study of Quintic and Sextic Curves, Masters Thesis, University of Wisconsin, 1922 (available on Google Books).

    Google Scholar 

  83. A. Iarrobino. Inverse system of a symbolic power, III. Thin algebras and fat points, Compos. Math. 108:3 (1997) 319–356.

    Google Scholar 

  84. I.B. Jafarloo and G. Zito. On the containment problem for fat points, to appear, J. Commut. Algebra (arXiv:1802.10178).

    Google Scholar 

  85. F. Klein. Über die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. (14) (1879) 428–471.

    Google Scholar 

  86. A. Laface and L. Ugaglia. A conjecture on special linear systems of \( {\mathbb {P}}^3\), Rend. Sem. Mat. Univ. Politec. Torino 63:1 (2005) 107–110.

    Google Scholar 

  87. A. Laface and L. Ugaglia. On a class of special linear systems of \( {\mathbb {P}}^3\), Trans. Amer. Math. Soc. 358:12 (2006) 5485–5500.

    Google Scholar 

  88. G. Malara, T. Szemberg and J. Szpond. On a conjecture of Demailly and new bounds on Waldschmidt constants in \( {\mathbb {P}}^N\), J. Number Theory 189 (2018) 211–219.

    Google Scholar 

  89. S. Marchesi and J. Vallès. Triangular arrangements on the projective plane, preprint 2019 (arXiv:1903.08885).

    Google Scholar 

  90. M. Nagata. On the 14-th problem of Hilbert, Amer. J. Math., 81 (1959) 766–772.

    Article  MathSciNet  MATH  Google Scholar 

  91. M. Nagata. On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 33 (1960), 271–293.

    Google Scholar 

  92. U. Nagel and W. Trok. Interpolation and the weak Lefschetz property, Trans. Amer. Math. Soc. 372 (2019) 8849–8870.

    Article  MathSciNet  MATH  Google Scholar 

  93. P. Pokora. Harbourne constants and arrangements of lines on smooth hypersurfaces in \( {\mathbb {P}}^3( {\mathbb {C}})\), Taiwan J. Math. 20(1): 25–31 (2016).

    Google Scholar 

  94. P. Pokora and J. Roé. The 21 reducible polars of Klein’s quartic, Experimental Mathematics 2019 (https://doi.org/10.1080/10586458.2018.1488155).

  95. P. Pokora and J. Roé. Harbourne constants, pull-back clusters and ramified morphisms, Results Math (2019) 74:109 (https://doi.org/10.1007/s00025-019-1031-x).

  96. J. Roé. Maximal rank for schemes of small multiplicity by Évain’s differential Horace method, Trans. Amer. Math. Soc. 366 (2014), 857–874.

    Article  MathSciNet  MATH  Google Scholar 

  97. X. Roulleau. Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Int. Math. Res. Not. 2017 (2017), no. 8, 2480–2496.

    MathSciNet  MATH  Google Scholar 

  98. X. Roulleau and G. Urzuá. Chern slopes of simply connected complex surfaces of general type, Ann. Math. 182 (2015) 287–306.

    Article  MathSciNet  MATH  Google Scholar 

  99. T. Sederburg, R. Goldman and H. Du. Implicitizing rational curves by the method of moving algebraic curves, J. Symb. Comput. (1997) 23 153–175.

    Article  MathSciNet  MATH  Google Scholar 

  100. T. Sederberg, T. Saito, D. Qi, K. Klimaszewski. Curve implicitization using moving lines, Computer Aided Geometric Design 11 (1994), 687–706.

    Article  MathSciNet  MATH  Google Scholar 

  101. B. Segre. Alcune questioni su insiemi finiti di punti in geometria algebrica. Atti Convegno Intern. di Geom. Alg. di Torino, (1961), 15–33.

    Google Scholar 

  102. H. Skoda. Estimations L2 pour l’opérateur \(\widehat {\partial }\) et applications arithmétiques. Lecture Notes Math. 578, Springer, 1977, 314–323.

    Google Scholar 

  103. J. Szpond. On linear Harbourne constants, British Journal of Mathematics & Computer Science 8(4) (2015) 286–297.

    Article  MathSciNet  Google Scholar 

  104. J. Szpond. Unexpected hypersurfaces with multiple fat points, J. Symb. Comput. (2020) (https://doi.org/10.1016/j.jsc.2020.07.018).

  105. J. Szpond. Unexpected curves and Togliatti-type surfaces, Math. Nach. 293 (2020) 158–168.

    Article  MathSciNet  MATH  Google Scholar 

  106. J. Szpond. Fermat-type arrangements, In: D. Stamate and T. Szemberg (eds), Combinatorial Structures in Algebra and Geometry. NSA 2018. Springer Proceedings in Mathematics & Statistics 331 (2020) 161–182.

    Google Scholar 

  107. Ş.O. Tohǎneanu. A computational criterion for supersolvability of line arrangements, Ars Combin.117 (2014) 217–223.

    Google Scholar 

  108. Ş.O. Tohǎneanu and Y. Xie. On the containment problem for fat points ideals and Harbourne’s conjecture, Proc. Amer. Math. Soc. 148 (2020) 2411–2419.

    Google Scholar 

  109. W. Trok. Projective duality, unexpected hypersurfaces and logarithmic derivations of hyperplane arrangements, preprint 2020 (arXiv:2003.02397).

    Google Scholar 

  110. M. Waldschmidt. Propriétés arithmétiques de fonctions de plusieurs variables II. Séminaire P. Lelong (Analyse), 1975–76, Lecture Notes Math. 578, Springer-Verlag, 1977, 108–135.

    Google Scholar 

  111. M. Waldschmidt. Nombres transcendants et groupes algébriques, Astérisque 69/70, Socéte Mathématiqué de France, 1979.

    Google Scholar 

  112. A. Wiman. Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Ann.(48) (1896) 195–240.

    Google Scholar 

Download references

Acknowledgements

The author was partially supported by Simons Foundation grant #524858. The author thanks everyone who looked over an early draft of this survey, and in particular M.-G. Ascenzi, S. Cooper, A. Dimca, E. Guardo, T. Ha, J. Migliore, J. Roé, A. Seceleanu, T. Szemberg, A. Van Tuyl and Y. Xie for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Harbourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harbourne, B. (2021). Algebraic Geometry, Commutative Algebra and Combinatorics: Interactions and Open Problems. In: Peeva, I. (eds) Commutative Algebra. Springer, Cham. https://doi.org/10.1007/978-3-030-89694-2_14

Download citation

Publish with us

Policies and ethics