Abstract
The expression of human art, and supposedly sentient art in general, is modulated by the available rendition, receiving and communication techniques. The components or instruments of these techniques ultimately exhibit a physical, in particular, quantum layer, which in turn translates into physical and technological capacities to comprehend and utilize what is possible in our universe. In this sense, we can apply a sort of Church-Turing thesis to art, or at least to its rendition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
This, H. (2005). Modelling dishes and exploring culinary ‘precisions’: the two issues of molecular gastronomy. British Journal of Nutrition, 93, S139.
Putz, V., & Svozil, K. (2017). Quantum music. Soft Computing, 21, 1467. arXiv:1503.09045.
Svozil, K. (2016). Quantum hocus-pocus, Ethics in Science and Environmental Politics (ESEP). 16, 25. arXiv:1605.08569.
Mermin, D. N. (2007). Quantum Computer Science. Cambridge: Cambridge University Press.
Fortnow, L. (2003). One complexity theorist’s view of quantum computing. Theoretical Computer Science, 292, 597.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. 10th Anniversary Edition.
Peres, A. (1978). Unperformed experiments have no results. American Journal of Physics, 46, 745.
Schrödinger, E. (1935). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 807.
Brukner, Č, & Zeilinger, A. (1999). Operationally invariant information in quantum measurements. Physical Review Letters, 83, 3354. quant-ph/0005084.
Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631.
Brukner, Č., Zukowski, M., & Zeilinger, A. (2002). The essence of entanglement. arXiv:quant-ph/0106119, translated to Chinese by Qiang Zhang and Yond-de Zhang, New Advances in Physics (Journal of the Chinese Physical Society).
Dzhafarov, E. N., Cervantes, V. H., & Kujala, J. V. (2017). Contextuality in canonical systems of random variables. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160389. arXiv:1703.01252 .
Abramsky, S. (2018). Contextuality: At the borders of paradox. In E. Landry (Ed.) Categories for the Working Philosopher (pp. 262–285). Oxford University Press, Oxford, UK. arXiv:2011.04899.
Grangier, P. (2002). Contextual objectivity: a realistic interpretation of quantum mechanics. European Journal of Physics, 23, 331. arXiv:quant-ph/0012122.
Aufféves, A., Grangier, P. (2018). Extracontextuality and extravalence in quantum mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170311. arXiv:1801.01398.
Auffèves, A., & Grangier, P. (2020). Deriving born’s rule from an inference to the best explanation. Foundations of Physics, 50, 1781. arXiv:1910.13738.
Grangier, P. (2020). Completing the quantum formalism in a contextually objective framework. arXiv:2003.03121.
Budroni, C., Cabello, A., Gühne, O., & Kleinmann, M. J. (2021). Quantum contextuality: Åke Larsson. arXiv:2102.13036 [quant-ph].
Specker, E. (1960). Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica, 14, 239. arXiv:1103.4537 .
Kochen, S., Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics (now Indiana University Mathematics Journal), 17, 59.
Svozil, K. (2021). Varieties of contextuality emphasizing (non)embeddability. arXiv:2103.06110.
Shannon, C. E. (1949). Bell System Technical Journal 27, 379 (1948), reprinted in C. E. Shannon and W. Weaver: The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois.
Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73, 58.
Zukowski, M., Zeilinger, A., & Horne, M. A. (1997). Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A, 55, 2564.
Glauber, R. J. (1986). Amplifiers, attenuators, and schrödinger’s cat. Annals of the New York Academy of Sciences, 480, 336.
Schrödinger, E. (1995). The Interpretation of Quantum Mechanics. Dublin Seminars (1949-1955) and Other Unpublished Essays. Woodbridge, Connecticut: Ox Bow Press.
von Neumann, J. (1932, 1996). Mathematische Grundlagen der Quantenmechanik, (2nd ed.). Berlin, Heidelberg: Springer, English translation in [54].
Everett, H., III. (1957). Relative State formulation of quantum mechanics. Reviews of Modern Physics, 29, 454.
Wigner, E. P. (1961, 1962, 1995) Remarks on the mind-body question. In I. J. Good (Ed.), The Scientist Speculates (pp. 284–302). London, New York, and Berlin: Heinemann, Basic Books, and Springer-Verlag.
Everett, H., III. (2012). The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary, edited by J. A. Barrett & P. Byrne. Princeton, NJ: Princeton University Press.
Schwinger, J. (1960). Unitary operators bases. Proceedings of the National Academy of Sciences (PNAS), 46, 570.
Zeilinger, A. (2005). The message of the quantum. Nature, 438, 743.
Svozil, K. (2004). Quantum information via state partitions and the context translation principle. Journal of Modern Optics, 51, 811. arXiv:quant-ph/0308110.
Peres, A. (1980). Can we undo quantum measurements? Physical Review D, 22, 879.
Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Physical Review A, 25, 2208.
Greenberger, D. M., & YaSin, A. (1989). “Haunted’’ measurements in quantum theory. Foundation of Physics, 19, 679.
Scully, M. O., Englert, B.-G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351, 111.
Zajonc, A. G., Wang, L. J., Zou, X. Y., & Mandel, L. (1991). Quantum eraser. Nature, 353, 507.
Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a & #x201C;quantum eraser:â? a revival of coherence in a two-photon interference experiment. Physical Review A, 45, 7729.
Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C. R., & Mlynek, J. (1994). Loss of spatial coherence by a single spontaneous emission. Physical Review Letters, 73, 1223.
Chapman, M. S., Hammond, T. D., Lenef, A., Schmiedmayer, J., Rubenstein, R. A., Smith, E., & Pritchard, D. E. (1995). Photon scattering from atoms in an atom interferometer: Coherence lost and regained. Physical Review Letters, 75, 3783.
Herzog, T. J., Kwiat, P. G., Weinfurter, H., & Zeilinger, A. (1995). Complementarity and the quantum eraser. Physical Review Letters, 75, 3034.
Pauli, W. (1933). Die allgemeinen Prinzipien der Wellenmechanik. In H. Geiger & K. Scheel (Ed.), Handbuch der Physik (Vol. 24, p. 126). Berlin: Springer.
Glauber, R. J. (1969). Quantum theory of coherence. In S. M. Kay & A. Maitland (Ed.), Quantum Optics: Proceedings of the Scottish Universities’ Summer School in Physics 1969. London: Academic Press.
Glauber, R. J. (2007). Amplifiers, attenuators and Schrödingers cat. In Quantum Theory of Optical Coherence (pp. 537–576). Wiley-VCH Verlag GmbH & Co. KGaA.
Weinberg, S. (1977). The search for unity: Notes for a history of quantum field theory. Daedalus, 106, 17.
Schrödinger, E. (1924). Über den Ursprung der Empfindlichkeitskurven des Auges. Die Naturwissenschaften, 12, 925.
Schrödinger, E., Niall, K. K. (2017). Erwin Schrödinger’s Color Theory. Springer International Publishing.
Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25, 819.
Westheimer, G. (2016). History of physiological optics in the twentieth century, in Handbook of Visual Optics: Fundamentals and Eye Optics, Volume One (Chap. 1, pp. 1–10). CRC Press, Taylor & Francis Group.
Tinsley, J. N., Molodtsov, M. I., Prevedel, R., Wartmann, D., Espigulé-Pons, J., Lauwers, M., & Vaziri, A. (2016). Direct detection of a single photon by humans. Nature Communications, 7. https://doi.org/10.1038/ncomms12172.
Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990), 400, 97.
Musil, R. (1906). Die Verwirrungen des Zöglings Törleß. Wien und Leipzig: Wiener Verlag, project Gutenberg ebook # 3471.
von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press, German original in [27].
Acknowledgements
This research was funded in whole, or in part, by the Austrian Science Fund (FWF), Project No. I 4579-N. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Putz, V., Svozil, K. (2022). Quantum Music, Quantum Arts and Their Perception. In: Miranda, E.R. (eds) Quantum Computing in the Arts and Humanities. Springer, Cham. https://doi.org/10.1007/978-3-030-95538-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-95538-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95537-3
Online ISBN: 978-3-030-95538-0
eBook Packages: Computer ScienceComputer Science (R0)