Skip to main content

Rasch Polytomous Models

  • Reference work entry
  • First Online:
Encyclopedia of Quality of Life and Well-Being Research
  • 1073 Accesses

Synonyms

Partial credit model; Polytomous Rasch model; Rating scale model

Definition

Rasch polytomous models are statistical models for test and questionnaire data suitable for the analysis of data collected using rating scales, Likert-type response scales, or other response data with ordered categories, while preserving the main defining characteristics of Rasch analysis for binary responses.

Description

The Rasch model is often initially introduced as a model for binary data. In that case, we consider 0 (zero) as an indicator of a negative or incorrect response, while we consider 1 (one) as indicating a positive or correct response. In questionnaires used to assess quality of life, patient reported outcomes, or personality traits, however, we often find a response format that is more fine-grained.

The Likert scale (Likert 1932) is maybe the most commonly used of these ordinal response formats: The responses in this rating scale are ordered, ranging from a low end that typically...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. J., Wilson, M. R., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.

    Article  Google Scholar 

  • Adams, R. J., Wu, M. L., & Carstensen, C. H. (2007). Application of multivariate Rasch models in international large scale educational assessment. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 271–280). New York: Springer.

    Chapter  Google Scholar 

  • Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.

    Article  Google Scholar 

  • Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47, 105–113.

    Article  Google Scholar 

  • Fischer, G. H., & Molenaar, I. W. (1995). Rasch models – Foundations, recent developments and applications. New York: Springer.

    Google Scholar 

  • Jansen, M. G. H. (1995). The Rasch poisson counts model for incomplete data: An application of the EM algorithm. Applied Psychological Measurement, 19(3), 291–302.

    Article  Google Scholar 

  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1–55.

    Google Scholar 

  • Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 147–174.

    Article  Google Scholar 

  • Müller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165–181.

    Article  Google Scholar 

  • Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159–176.

    Article  Google Scholar 

  • Rost, J. (1988). Measuring attitudes with a threshold model drawing on a traditional scaling concept. Applied Psychological Measurement, 12, 397–409.

    Article  Google Scholar 

  • Rost, J. (1991). A logistic mixture distribution model for polytomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75–92.

    Article  Google Scholar 

  • von Davier, M. (2000). WINMIRA 2001 – Software manual. IPN: Institute for Science Education. Student Version available at: http://www.von-davier.com

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report RR-05-16). Princeton: Educational Testing Service.

    Google Scholar 

  • von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28. Retrieved May 10, 2010, from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf

  • von Davier, M., & Carstensen, C. H. (Eds.). (2007). Multivariate and mixture distribution Rasch models: Extensions and applications. New York: Springer.

    Google Scholar 

  • von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models – Foundations, recent developments and applications (pp. 371–379). New York: Springer.

    Google Scholar 

  • Xu, X. (2007). Monotone properties of a general diagnostic model (ETS Research Rep. No. RR-07-25). Princeton: Educational Testing Service.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias von Davier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

von Davier, M. (2023). Rasch Polytomous Models. In: Maggino, F. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Cham. https://doi.org/10.1007/978-3-031-17299-1_2412

Download citation

Publish with us

Policies and ethics