Skip to main content

Spatial Autoregressive Fractionally Integrated Moving Average Model

  • Chapter
  • First Online:
Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science

Abstract

In this chapter, we introduce the concept of fractional integration for spatial autoregressive models. We show that the range of the dependence can be spatially extended or diminished by introducing a further fractional integration parameter to spatial autoregressive moving average models (SARMA). This new model is called spatial autoregressive fractionally integrated moving average model, briefly spARFIMA. We show the relation to time-series ARFIMA models and also to (higher-order) spatial autoregressive models. Moreover, an estimation procedure based on the maximum-likelihood principle is introduced and analysed in a series of simulation studies. Eventually, the use of the model is illustrated by an empirical example of atmospheric fine particles, so-called aerosol optical thickness, which is important in weather, climate, and environmental science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Basak, G. K., Bhattacharjee, A., & Das, S. (2018). Causal ordering and inference on acyclic networks. Empirical Economics, 55(1), 213–232.

    Article  Google Scholar 

  • Beran, J. (2017). Statistics for long-memory processes. Routledge.

    Book  Google Scholar 

  • Beran, J., Ghosh, S., & Schell, D. (2009). On least squares estimation for long-memory lattice processes. Journal of Multivariate Analysis, 100(10), 2178–2194.

    Article  MathSciNet  Google Scholar 

  • Boissy, Y., Bhattacharyya, B., Li, X., Richardson, G., et al. (2005). Parameter estimates for fractional autoregressive spatial processes. The Annals of Statistics, 33(6), 2553–2567.

    Article  MathSciNet  Google Scholar 

  • Doğan, O., & Taşpınar, S. (2013). GMM estimation of spatial autoregressive models with moving average disturbances. Regional Science and Urban Economics, 43(6), 903–926.

    Article  Google Scholar 

  • Elhorst, J. P., Lacombe, D. J., & Piras, G. (2012). On model specification and parameter space definitions in higher order spatial econometric models. Regional Science and Urban Economics, 42(1–2), 211–220.

    Article  Google Scholar 

  • Ghalanos, A., & Theussl, S. (2012). Rsolnp: General Non-linear Optimization Using Augmented Lagrange Multiplier Method. R package version 1.14.

    Google Scholar 

  • Ghodsi, A., & Shitan, M. (2009). Estimation of the memory parameters of the fractionally integrated separable spatial autoregressive (FISSAR (1, 1)) model: A simulation study. Communications in Statistics-Simulation and Computation, 38(6), 1256–1268.

    Article  MathSciNet  Google Scholar 

  • Gibbons, S., & Overman, H. G. (2012). Mostly pointless spatial econometrics? Journal of Regional Science, 52(2), 172–191.

    Article  Google Scholar 

  • Gupta, P., Khan, M. N., da Silva, A., & Patadia, F. (2013). Modis aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring. Atmospheric pollution research, 4(1), 43–52.

    Article  Google Scholar 

  • Kumar, N., Chu, A., & Foster, A. (2007). An empirical relationship between PM2. 5 and aerosol optical depth in Delhi metropolitan. Atmospheric Environment, 41(21), 4492–4503.

    Article  Google Scholar 

  • Lahiri, S., Robinson, P. M., et al. (2016). Central limit theorems for long range dependent spatial linear processes. Bernoulli, 22(1), 345–375.

    Article  MathSciNet  Google Scholar 

  • Lam, C., & Souza, P. C. (2016). Detection and estimation of block structure in spatial weight matrix. Econometric Reviews, 35(8–10), 1347–1376.

    Article  MathSciNet  Google Scholar 

  • Leonenko, N., & Taufer, E. (2013). Disaggregation of spatial autoregressive processes. Spatial Statistics, 3, 1–20.

    Article  Google Scholar 

  • Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531–542.

    Article  MathSciNet  Google Scholar 

  • Martin, R. (1979). A subclass of lattice processes applied to a problem in planar sampling. Biometrika, 66(2), 209–217.

    Article  MathSciNet  Google Scholar 

  • Merk, M. S., & Otto, P. (2021). Directional spatial autoregressive dependence in the conditional first-and second-order moments. Spatial Statistics, 41, 100490.

    Article  MathSciNet  Google Scholar 

  • Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120–126.

    Article  MathSciNet  Google Scholar 

  • Otto, P., & Steinert, R. (2022). Estimation of the spatial weighting matrix for spatiotemporal data under the presence of structural breaks. Journal of Computational and Graphical Statistics, 32(2), 696–711. https://doi.org/10.1080/10618600.2022.2107530.

    Article  MathSciNet  Google Scholar 

  • Robinson, P. M. (2020). Spatial long memory. Japanese Journal of Statistics and Data Science, 3(1), 243–256.

    Article  MathSciNet  Google Scholar 

  • Robinson, P. M., & Sanz, J. V. (2006). Modified whittle estimation of multilateral models on a lattice. Journal of Multivariate Analysis, 97(5), 1090–1120.

    Article  MathSciNet  Google Scholar 

  • Shitan, M. (2008). Fractionally integrated separable spatial autoregressive (FISSAR) model and some of its properties. Communications in Statistics—Theory and Methods, 37(8), 1266–1273.

    Article  MathSciNet  Google Scholar 

  • Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental health perspectives, 118(6), 847–855.

    Article  Google Scholar 

  • Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2. 5 mass: Implications for air quality studies. Geophysical Research Letters, 30(21), 2095. https://doi.org/10.1029/2003GL018174.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Otto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otto, P., Sibbertsen, P. (2024). Spatial Autoregressive Fractionally Integrated Moving Average Model. In: Knoth, S., Okhrin, Y., Otto, P. (eds) Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-031-69111-9_22

Download citation

Publish with us

Policies and ethics