Abstract
The idea of an algebraic-analytic approach to equations of mathematical physics means to find a commutative Banach algebra such that monogenic functions with values in this algebra have components satisfying to given equations with partial derivatives.
We obtain here a constructive description of monogenic functions taking values in a commutative algebra associated with a two-dimensional biharmonic equation by means of analytic functions of complex variables. For the mentioned monogenic functions we establish basic properties analogous to properties of analytic functions of complex variables: the Cauchy integral theorem and integral formula, the Morera theorem, the uniqueness theorem, and the Taylor and Laurent expansions. Similar results are obtained for monogenic functions which take values in a three-dimensional commutative algebra and satisfy the three-dimensional Laplace equation.
In infinite-dimensional commutative Banach algebras we construct explicitly monogenic functions which have components satisfying the threedimensional Laplace equation. We establish that all spherical functions are components of the mentioned monogenic functions. A relation between these monogenic functions and harmonic vectors is described.
We establish that solutions of elliptic equations degenerating on an axis are constructed by means of components of analytic functions taking values in an infinite-dimensional commutative Banach algebra. In such a way we obtain integral expressions for axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to an axis.
Mathematics Subject Classification (2010). Primary 30G35; Secondary 35J05, 31A30.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol.1, Berlin: Verlag von Julius Springer, 1926. 179
P.W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc., 30 (1928), 641-667. 179, 180
I.P. Mel’nichenko, Algebras of functionally invariant solutions of the three-dimen-sional Laplace equation, Ukr. Math. J., 55 (2003), no. 9, 1551-1557. 179, 180, 181, 182
I.P. Mel’nichenko and S.A. Plaksa, Commutative algebras and spatial potential fields,Kiev: Inst. Math. NAS Ukraine, 2008. [in Russian] 179, 180, 181, 182, 183, 184, 186,196, 203, 205, 206, 208, 210
C. Segre, The real representations of complex elements and extensions to bicomplexsystems, Math. Ann., 40 (1892), 413-467. 180
K.S. Kunz, Application of an algebraic technique to the solution of Laplace’s equationin three dimensions, SIAM J. Appl. Math., 21 (1971), no. 3, 425-441. 180
I.P. Mel’nichenko, The representation of harmonic mappings by monogenic functions,Ukr. Math. J., 27 (1975), no. 5, 499-505. 180, 181
E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, American Mathe-matical Society, Providence, R.I., 1957. 183, 186, 205, 212
S.A. Plaksa and V.S. Shpakivskyi, Constructive description of monogenic functions in a harmonic algebra of the third rank, Ukr. Math. J., 62 (2010), no. 8, 1078-1091.183
Ju.Ju. Trohimchuk, Continuous mappings and conditions of monogenity, Israel Pro-gram for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1964. 185
G.P. Tolstov, On the curvilinear and iterated integral, Trudy Mat. Inst. Steklov., Acad. Sci. USSR, 35 (1950), 3-101 [in Russian]. 187
E.R. Lorch, The theory of analytic function in normed abelin vector rings, Trans.Amer. Math. Soc., 54 (1943), 414-425. 191, 215
E.K. Blum, A theory of analytic functions in Banach algebras, Trans. Amer. Math. Soc., 78 (1955), 343-370. 191, 194, 215
A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc., 85 (1979), 199-191, 192
F. Colombo, I. Sabadini and D. Struppa, Slice monogenic functions, arXiv:0708.3595v2 [math.CV] 25 Jan 2008. 191, 192
F. Brackx and R. Delanghe, Duality in Hypercomplex Functions Theory, J. Funct. Anal., 37 (1980), no. 2, 164-181. 191, 192
S. Bernstein, Factorization of the nonlinear Schrödinger equation and applications, Complex Variables and Elliptic Equations, 51 (2006), no. 5-6, 429-452. 191, 192
V.V. Kravchenko and M.V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley Longman Inc., 1996. 191, 192
S.A. Plaksa and V.S. Shpakivskyi, Integral theorems in a commutative three-dimensional harmonic algebra, Progress in Analysis and its Applications: Proc. of the7th Intern. ISAAC Congress, 13-18 July, 2009, World Scientific, 2010, pp. 232-239.191
V.S. Shpakivskyi and S.A. Plaksa, Integral theorems and a Cauchy formula in a commutative three-dimensional harmonic algebra, Bulletin Soc. Sci. et Lettr. Lódz, 60 (2010), 47-54. 191
W. Sprößig, Eigenvalue problems in the framework of Clifford analysis, Advances in Applied Clifford Algebras, 11 (2001), 301-316. 192
J. Ryan, Dirac operators, conformal transformations and aspects of classical har-monic analysis, J. of Lie Theory, 8 (1998), 67-82. 192
W. Sprössig, Quaternionic analysis and Maxwell’s equations, CUBO A Math. J., 7 (2005), no. 2, 57-67. 192
B. Schneider and E. Karapinar, A note on biquaternionic MIT bag model, Int. J. Contemp. Math. Sci., 1 (2006), no. 10, 449-461. 192
A.S. Meylekhzon, On monogenity of quaternions, Doklady Acad. Nauk SSSR, 59 (1948), no. 3, 431-434. 192
B.V. Shabat, Introduction to the complex analysis, Part 1, Science, Moscow, 1976 [in Russian]. 196, 216, 217, 219
S.A. Plaksa, Harmonic commutative Banach algebras and spatial potential fields, Complex Analysis and Potential Theory: Proc. of Conference Satellite to ICM-2006, Gebze Institute of Technology, Turkey, September 8-14, 2006, World Scientific, 2007, pp. 166-173. 196
S.A. Plaksa, An infinite-dimensional commutative Banach algebra and spatial poten-tial fields, Further progress in analysis: Proc. of 6th International ISAAC Congress, Ankara, August 13-18, 2007, World Scientific, 2009, pp. 268-277. 196
I.N. Vekua, Generalized analytic functions, London, Pergamon Press, 1962. 202
I.P. Mel’nichenko and S.A. Plaksa, Potential fields with axial symmetry and algebras of monogenic functions of vector variable, III, Ukr. Math. J., 49 (1997), no. 2, 253-268. 203, 205, 206
S.A. Plaksa, On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane, I, Ukr. Math. J., 53 (2001), no. 5, 726-743. 203, 208, 209
S.A. Plaksa, Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane, Ukr. Math. J., 53 (2001), no. 12, 1976-1997. 203, 210
S.A. Plaksa, On an outer Dirichlet problem solving for the axial-symmetric potential, Ukr. Math. J., 54 (2002), no. 12, 1634-1641. 203, 210
S.A. Plaksa, Dirichlet problem for the Stokes flow function in a simply connected domain of the meridian plane, Ukr. Math. J., 55 (2003), no. 2, 197-231. 203, 210
S. Plaksa, Singular and Fredholm integral equations for Dirichlet boundary problems for axial-symmetric potential fields, Factorization, Singular Operators and RelatedProblems: Proceedings of the Conference in Honour of Professor Georgii Litvinchuk,Funchal, January 28-February 1, 2002, Kluwer Academic Publishers, 2003, pp. 219-235. 203, 209, 210
I.P. Mel’nichenko and S.A. Plaksa, Outer boundary problems for the Stokes flow function and steady streamline along axial-symmetric bodies, Complex Analysis and Potential Theory, Kiev, Institute of Mathematics of the National Academy of Sciences of Ukraine, 2003, pp. 82-91. 203, 210
I.P. Mel’nichenko, On a method of description of potential fields with axial sym-metry, Contemporary Questions of Real and Complex Analysis, Kiev, Institute ofMathematics of Ukrainian Academy of Sciences, 1984, pp. 98-102 [in Russian]. 203
S. Plaksa, Algebras of hypercomplex monogenic functions and axial-symmetrical po-tential fields, Proc. of Second ISAAC Congress, Fukuoka, August 16-21, 1999, Kluwer Academic Publishers, 1 (2000), 613-622. 203
I.M. Gel’fand, D.A. Raikov and G.E. Shilov, Commutative Normed Rings, Moscow,Fizmatgiz, 1960 [in Russian]. 204
I.P. Mel’nichenko and S.A. Plaksa, Commutative algebra of hypercomplex analytic functions and solutions of elliptic equations degenerating on an axis, Transactions of the Institute of Mathematics of the National Academy of Sciences of Ukraine, Vol. 1 (2004), no. 3, 144-150. 206
S. Plaksa, Commutative algebras of hypercomplex monogenic functions and solutions of elliptic type equations degenerating on an axis, More progress in analysis: Proc. of 5th International ISAAC Congress, Catania, July 25-30, 2005, World Scientific (2009), 977-986. 206
Grishchuk S.V. and S.A. Plaksa, Expressions of solutions of the Euler-Poisson-Darboux equation via components of hypercomplex analytic functions, Dop. NAN Ukr., no. 8 (2006), 18-24 [in Ukrainian]. 207
I.I. Privalov, Boundary Properties of Analytic Functions, Moscow, Gostekhizdat, 1950 [in Russian]. 209
A.G. Mackie, Contour integral solutions of a class of differential equations, J. Ration. Mech. Anal., 4 (1955), no. 5, 733-750. 209
P. Henrici, On the domain of regularity of generalized axially symmetric potentials,Proc. Amer. Math. Soc., 8 (1957), no. 1, 29-31. 209
Yu.P. Krivenkov, Representation of solutions of the Euler-Poisson-Darboux equationvia analytic functions, Dokl. Akad. Nauk SSSR, 116 (1957), no. 4, 545-548. 209
G.N. Polozhii, Theory and Application of -Analytic and ( , )-Analytic Functions, Kiev, Naukova Dumka, 1973 [in Russian]. 209
Grishchuk S.V. and S.A. Plaksa, Integral representations of generalized axially sym-metric potentials in a simply connected domain, Ukr. Math. J., 61 (2009), no. 2,195-213. 209
V.F. Kovalev and I.P. Mel’nichenko, Biharmonic functions on biharmonic plane,Dop. AN Ukr. Ser. A., no. 8 (1981), 25-27 [in Russian]. 210, 211, 213
I.P. Mel’nichenko, Biharmonic bases in algebras of the second rank, Ukr. Math. J., 38 (1986), no. 2, 224-226. 210
Grishchuk S.V. and S.A. Plaksa, Monogenic functions in a biharmonic algebra, Ukr.Math. J., 61 (2009), no. 12, 1865-1876. 211
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel
About this paper
Cite this paper
Plaksa, S.A. (2012). Commutative Algebras Associated with Classic Equations of Mathematical Physics. In: Rogosin, S., Koroleva, A. (eds) Advances in Applied Analysis. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0417-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0417-2_5
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0416-5
Online ISBN: 978-3-0348-0417-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)