Skip to main content

Commutative Algebras Associated with Classic Equations of Mathematical Physics

  • Conference paper
  • First Online:
Advances in Applied Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 991 Accesses

  • 17 Citations

Abstract

The idea of an algebraic-analytic approach to equations of mathematical physics means to find a commutative Banach algebra such that monogenic functions with values in this algebra have components satisfying to given equations with partial derivatives.

We obtain here a constructive description of monogenic functions taking values in a commutative algebra associated with a two-dimensional biharmonic equation by means of analytic functions of complex variables. For the mentioned monogenic functions we establish basic properties analogous to properties of analytic functions of complex variables: the Cauchy integral theorem and integral formula, the Morera theorem, the uniqueness theorem, and the Taylor and Laurent expansions. Similar results are obtained for monogenic functions which take values in a three-dimensional commutative algebra and satisfy the three-dimensional Laplace equation.

In infinite-dimensional commutative Banach algebras we construct explicitly monogenic functions which have components satisfying the threedimensional Laplace equation. We establish that all spherical functions are components of the mentioned monogenic functions. A relation between these monogenic functions and harmonic vectors is described.

We establish that solutions of elliptic equations degenerating on an axis are constructed by means of components of analytic functions taking values in an infinite-dimensional commutative Banach algebra. In such a way we obtain integral expressions for axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to an axis.

Mathematics Subject Classification (2010). Primary 30G35; Secondary 35J05, 31A30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol.1, Berlin: Verlag von Julius Springer, 1926. 179

    Google Scholar 

  2. P.W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc., 30 (1928), 641-667. 179, 180

    Google Scholar 

  3. I.P. Mel’nichenko, Algebras of functionally invariant solutions of the three-dimen-sional Laplace equation, Ukr. Math. J., 55 (2003), no. 9, 1551-1557. 179, 180, 181, 182

    Google Scholar 

  4. I.P. Mel’nichenko and S.A. Plaksa, Commutative algebras and spatial potential fields,Kiev: Inst. Math. NAS Ukraine, 2008. [in Russian] 179, 180, 181, 182, 183, 184, 186,196, 203, 205, 206, 208, 210

    Google Scholar 

  5. C. Segre, The real representations of complex elements and extensions to bicomplexsystems, Math. Ann., 40 (1892), 413-467. 180

    Google Scholar 

  6. K.S. Kunz, Application of an algebraic technique to the solution of Laplace’s equationin three dimensions, SIAM J. Appl. Math., 21 (1971), no. 3, 425-441. 180

    Google Scholar 

  7. I.P. Mel’nichenko, The representation of harmonic mappings by monogenic functions,Ukr. Math. J., 27 (1975), no. 5, 499-505. 180, 181

    Google Scholar 

  8. E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, American Mathe-matical Society, Providence, R.I., 1957. 183, 186, 205, 212

    Google Scholar 

  9. S.A. Plaksa and V.S. Shpakivskyi, Constructive description of monogenic functions in a harmonic algebra of the third rank, Ukr. Math. J., 62 (2010), no. 8, 1078-1091.183

    Google Scholar 

  10. Ju.Ju. Trohimchuk, Continuous mappings and conditions of monogenity, Israel Pro-gram for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1964. 185

    Google Scholar 

  11. G.P. Tolstov, On the curvilinear and iterated integral, Trudy Mat. Inst. Steklov., Acad. Sci. USSR, 35 (1950), 3-101 [in Russian]. 187

    Google Scholar 

  12. E.R. Lorch, The theory of analytic function in normed abelin vector rings, Trans.Amer. Math. Soc., 54 (1943), 414-425. 191, 215

    Google Scholar 

  13. E.K. Blum, A theory of analytic functions in Banach algebras, Trans. Amer. Math. Soc., 78 (1955), 343-370. 191, 194, 215

    Google Scholar 

  14. A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc., 85 (1979), 199-191, 192

    Google Scholar 

  15. F. Colombo, I. Sabadini and D. Struppa, Slice monogenic functions, arXiv:0708.3595v2 [math.CV] 25 Jan 2008. 191, 192

    Google Scholar 

  16. F. Brackx and R. Delanghe, Duality in Hypercomplex Functions Theory, J. Funct. Anal., 37 (1980), no. 2, 164-181. 191, 192

    Google Scholar 

  17. S. Bernstein, Factorization of the nonlinear Schrödinger equation and applications, Complex Variables and Elliptic Equations, 51 (2006), no. 5-6, 429-452. 191, 192

    Google Scholar 

  18. V.V. Kravchenko and M.V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley Longman Inc., 1996. 191, 192

    Google Scholar 

  19. S.A. Plaksa and V.S. Shpakivskyi, Integral theorems in a commutative three-dimensional harmonic algebra, Progress in Analysis and its Applications: Proc. of the7th Intern. ISAAC Congress, 13-18 July, 2009, World Scientific, 2010, pp. 232-239.191

    Google Scholar 

  20. V.S. Shpakivskyi and S.A. Plaksa, Integral theorems and a Cauchy formula in a commutative three-dimensional harmonic algebra, Bulletin Soc. Sci. et Lettr. Lódz, 60 (2010), 47-54. 191

    Google Scholar 

  21. W. Sprößig, Eigenvalue problems in the framework of Clifford analysis, Advances in Applied Clifford Algebras, 11 (2001), 301-316. 192

    Google Scholar 

  22. J. Ryan, Dirac operators, conformal transformations and aspects of classical har-monic analysis, J. of Lie Theory, 8 (1998), 67-82. 192

    Google Scholar 

  23. W. Sprössig, Quaternionic analysis and Maxwell’s equations, CUBO A Math. J., 7 (2005), no. 2, 57-67. 192

    Google Scholar 

  24. B. Schneider and E. Karapinar, A note on biquaternionic MIT bag model, Int. J. Contemp. Math. Sci., 1 (2006), no. 10, 449-461. 192

    Google Scholar 

  25. A.S. Meylekhzon, On monogenity of quaternions, Doklady Acad. Nauk SSSR, 59 (1948), no. 3, 431-434. 192

    Google Scholar 

  26. B.V. Shabat, Introduction to the complex analysis, Part 1, Science, Moscow, 1976 [in Russian]. 196, 216, 217, 219

    Google Scholar 

  27. S.A. Plaksa, Harmonic commutative Banach algebras and spatial potential fields, Complex Analysis and Potential Theory: Proc. of Conference Satellite to ICM-2006, Gebze Institute of Technology, Turkey, September 8-14, 2006, World Scientific, 2007, pp. 166-173. 196

    Google Scholar 

  28. S.A. Plaksa, An infinite-dimensional commutative Banach algebra and spatial poten-tial fields, Further progress in analysis: Proc. of 6th International ISAAC Congress, Ankara, August 13-18, 2007, World Scientific, 2009, pp. 268-277. 196

    Google Scholar 

  29. I.N. Vekua, Generalized analytic functions, London, Pergamon Press, 1962. 202

    Google Scholar 

  30. I.P. Mel’nichenko and S.A. Plaksa, Potential fields with axial symmetry and algebras of monogenic functions of vector variable, III, Ukr. Math. J., 49 (1997), no. 2, 253-268. 203, 205, 206

    Google Scholar 

  31. S.A. Plaksa, On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane, I, Ukr. Math. J., 53 (2001), no. 5, 726-743. 203, 208, 209

    Google Scholar 

  32. S.A. Plaksa, Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane, Ukr. Math. J., 53 (2001), no. 12, 1976-1997. 203, 210

    Google Scholar 

  33. S.A. Plaksa, On an outer Dirichlet problem solving for the axial-symmetric potential, Ukr. Math. J., 54 (2002), no. 12, 1634-1641. 203, 210

    Google Scholar 

  34. S.A. Plaksa, Dirichlet problem for the Stokes flow function in a simply connected domain of the meridian plane, Ukr. Math. J., 55 (2003), no. 2, 197-231. 203, 210

    Google Scholar 

  35. S. Plaksa, Singular and Fredholm integral equations for Dirichlet boundary problems for axial-symmetric potential fields, Factorization, Singular Operators and RelatedProblems: Proceedings of the Conference in Honour of Professor Georgii Litvinchuk,Funchal, January 28-February 1, 2002, Kluwer Academic Publishers, 2003, pp. 219-235. 203, 209, 210

    Google Scholar 

  36. I.P. Mel’nichenko and S.A. Plaksa, Outer boundary problems for the Stokes flow function and steady streamline along axial-symmetric bodies, Complex Analysis and Potential Theory, Kiev, Institute of Mathematics of the National Academy of Sciences of Ukraine, 2003, pp. 82-91. 203, 210

    Google Scholar 

  37. I.P. Mel’nichenko, On a method of description of potential fields with axial sym-metry, Contemporary Questions of Real and Complex Analysis, Kiev, Institute ofMathematics of Ukrainian Academy of Sciences, 1984, pp. 98-102 [in Russian]. 203

    Google Scholar 

  38. S. Plaksa, Algebras of hypercomplex monogenic functions and axial-symmetrical po-tential fields, Proc. of Second ISAAC Congress, Fukuoka, August 16-21, 1999, Kluwer Academic Publishers, 1 (2000), 613-622. 203

    Google Scholar 

  39. I.M. Gel’fand, D.A. Raikov and G.E. Shilov, Commutative Normed Rings, Moscow,Fizmatgiz, 1960 [in Russian]. 204

    Google Scholar 

  40. I.P. Mel’nichenko and S.A. Plaksa, Commutative algebra of hypercomplex analytic functions and solutions of elliptic equations degenerating on an axis, Transactions of the Institute of Mathematics of the National Academy of Sciences of Ukraine, Vol. 1 (2004), no. 3, 144-150. 206

    Google Scholar 

  41. S. Plaksa, Commutative algebras of hypercomplex monogenic functions and solutions of elliptic type equations degenerating on an axis, More progress in analysis: Proc. of 5th International ISAAC Congress, Catania, July 25-30, 2005, World Scientific (2009), 977-986. 206

    Google Scholar 

  42. Grishchuk S.V. and S.A. Plaksa, Expressions of solutions of the Euler-Poisson-Darboux equation via components of hypercomplex analytic functions, Dop. NAN Ukr., no. 8 (2006), 18-24 [in Ukrainian]. 207

    Google Scholar 

  43. I.I. Privalov, Boundary Properties of Analytic Functions, Moscow, Gostekhizdat, 1950 [in Russian]. 209

    Google Scholar 

  44. A.G. Mackie, Contour integral solutions of a class of differential equations, J. Ration. Mech. Anal., 4 (1955), no. 5, 733-750. 209

    Google Scholar 

  45. P. Henrici, On the domain of regularity of generalized axially symmetric potentials,Proc. Amer. Math. Soc., 8 (1957), no. 1, 29-31. 209

    Google Scholar 

  46. Yu.P. Krivenkov, Representation of solutions of the Euler-Poisson-Darboux equationvia analytic functions, Dokl. Akad. Nauk SSSR, 116 (1957), no. 4, 545-548. 209

    Google Scholar 

  47. G.N. Polozhii, Theory and Application of -Analytic and ( , )-Analytic Functions, Kiev, Naukova Dumka, 1973 [in Russian]. 209

    Google Scholar 

  48. Grishchuk S.V. and S.A. Plaksa, Integral representations of generalized axially sym-metric potentials in a simply connected domain, Ukr. Math. J., 61 (2009), no. 2,195-213. 209

    Google Scholar 

  49. V.F. Kovalev and I.P. Mel’nichenko, Biharmonic functions on biharmonic plane,Dop. AN Ukr. Ser. A., no. 8 (1981), 25-27 [in Russian]. 210, 211, 213

    Google Scholar 

  50. I.P. Mel’nichenko, Biharmonic bases in algebras of the second rank, Ukr. Math. J., 38 (1986), no. 2, 224-226. 210

    Google Scholar 

  51. Grishchuk S.V. and S.A. Plaksa, Monogenic functions in a biharmonic algebra, Ukr.Math. J., 61 (2009), no. 12, 1865-1876. 211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Plaksa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Plaksa, S.A. (2012). Commutative Algebras Associated with Classic Equations of Mathematical Physics. In: Rogosin, S., Koroleva, A. (eds) Advances in Applied Analysis. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0417-2_5

Download citation

Publish with us

Policies and ethics