Skip to main content
  • 4392 Accesses

  • 8 Citations

Abstract

The purpose of this paper is to survey some developments in the study of Radon transforms. These operators and the related oscillatory integrals have long been of interest in harmonic analysis and mathematical physics. Lately, they have emerged as key analytic tools in a wide variety of problems, ranging from partial differential equations to singularity theory and probability. It is not possible for us to describe adequately the progress made in all these areas in this limited space. Instead, we shall focus on the more analytic aspects, and take the opportunity to describe some recent joint work of the author with Elias M. Stein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Antoniono and G. Uhlmann,A functional calculus for a class of pseudo-differential operators with singular symbols, Proc. Symp. Pure Math.43 (1985), 5–16.

    Article  Google Scholar 

  2. V. I. Arnold,Critical points of smooth functions and their normal forms, Russian Math. Surveys30 (1975), 1–75.

    Article  MathSciNet  Google Scholar 

  3. M. Christ,Failure of an endpoint estimate for integrals along curves, (1993) UCLA preprint.

    MATH  Google Scholar 

  4. M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms, to appear in Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  5. M. Cowling, S. Disney, G. Mauceri, and D. Müller,Damping oscillatory integrals, Invent. Math.101 (1990), 237–260.

    Article  MathSciNet  Google Scholar 

  6. P. Diaconis, Group representations in probability and statistics, Lecture Notes- Monograph Series, Inst. Math. Stat.11 (1988).

    Google Scholar 

  7. C. Fefferman,Monge-Ampère equations, the Bergman kernel, and the geometry of pseudo convex domains, Ann. of Math.103 (1976), 395–416.

    Article  MathSciNet  Google Scholar 

  8. I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro,Integral geometry on k-planes, Funct. Anal. Appl.1 (1967), 14–27.

    Article  MathSciNet  Google Scholar 

  9. D. Geller, and E. M. Stein,Estimates for singular convolution operators on the Heisenberg group, Math. Ann.267 (1984), 1–15.

    Article  MathSciNet  Google Scholar 

  10. A. Greenleaf, and A. Seeger,Fourier integral operators with fold singularities, (1993) preprint.

    Google Scholar 

  11. A. Greenleaf, and G. Uhlmann,Non-local inversion formulas for the X-ray transform, Duke Math. J.58 (1989), 205–240.

    Article  MathSciNet  Google Scholar 

  12. A. Greenleaf, and G. Uhlmann,Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal.89 (1990), 202–232.

    Article  MathSciNet  Google Scholar 

  13. A. Greenleaf, and G. Uhlmann,Composition of some singular Fourier integral operators and estimates for the X-ray transform, I, Ann. Inst. Fourier (Grenoble)40 (1990); II, 1991 preprint.

    Google Scholar 

  14. A. Greenleaf, and G. Uhlmann,Composition of some singular Fourier integral operators and estimates for the X-ray transform, I, Ann. Inst. Fourier (Grenoble)40 (1990); II, 1991 preprint.

    Google Scholar 

  15. V. Guillemin, Cosmology in (2 + 1) dimensions, cyclic models, and deformations ofM2,1, Ann. of Math. Stud. 121 (1989), Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  16. V. Guillemin and G. Uhlmann,Oscillatory integrals with singular symbols, Duke Math. J.48 (1981), 251–257.

    Article  MathSciNet  Google Scholar 

  17. L. Hörmander,Oscillatory integrals and multipliers on FLp, Arkiv. Mat.11 (1973), 1–11.

    Article  MathSciNet  Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators I-IV, Springer-Verlag, Berlin and New York (1985).

    MATH  Google Scholar 

  19. V. N. Karpushkin,Uniform estimates of oscillatory integrals with parabolic or hyperbolic phases, J. Soviet Math.33 (1986), 1159–1188.

    Article  Google Scholar 

  20. V. N. Karpushkin,A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables, J. Soviet Math.35 (1986), 2809–2826.

    Article  Google Scholar 

  21. C. Kenig, G. Ponce, and L. Vega,Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991), 33–69.

    Article  MathSciNet  Google Scholar 

  22. A. G. Kushnirenko,Polyèdres de Newton et nombres de Milnor, Invent. Math.32 (1976), 1–31.

    Article  MathSciNet  Google Scholar 

  23. R. Melrose, and M. Taylor,Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. in Math.55 (1985), 242–315.

    Article  MathSciNet  Google Scholar 

  24. R. Melrose, and G. Uhlmann,Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math.32 (1979), 483–519.

    Article  MathSciNet  Google Scholar 

  25. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud.61 (1968), Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  26. D. Oberlin,Convolution estimates for some measures on curves, Proc. Amer. Math. Soc.99 (1987), 56–60.

    Article  MathSciNet  Google Scholar 

  27. Y. Pan, and C. Sogge,Oscillatory integrals associated to folding canonical relations, Colloq. Math.60 (1990), 413–419.

    Article  MathSciNet  Google Scholar 

  28. D. H. Phong, and E. M. Stein,Hilbert integrals, singular integrals, and Radon transforms, Acta Math.157 (1986), 99–157; Invent. Math.86 (1986), 75–113.

    Article  MathSciNet  Google Scholar 

  29. D. H. Phong, and E. M. Stein,Hilbert integrals, singular integrals, and Radon transforms, Acta Math.157 (1986), 99–157; Invent. Math.86 (1986), 75–113.

    Article  MathSciNet  Google Scholar 

  30. D. H. Phong, and E. M. Stein,Radon transforms and torsion, Int. Math. Res. Notices4 (1991), 49–60.

    Article  MathSciNet  Google Scholar 

  31. D. H. Phong, and E. M. Stein,Oscillatory integrals with polynomial phases, Invent. Math.110 (1992), 39–62.

    Article  MathSciNet  Google Scholar 

  32. D. H. Phong, and E. M. Stein,Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. (2) 140 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  33. D. H. Phong, and E. M. Stein,On a stopping process for oscillatory integrals, J. Geom. Anal.4 (1994), 105–120.

    Article  MathSciNet  Google Scholar 

  34. D. H. Phong, and E. M. Stein,Operator versions of the van der Corput lemma and Fourier integral operators, Math. Res. Lett.1 (1994), 27–33.

    Article  MathSciNet  Google Scholar 

  35. D. H. Phong, and E. M. Stein, in preparation.

    Google Scholar 

  36. F. Ricci, and E. M. Stein,Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Funct. Anal.73 (1987), 179–194;II. Singular kernels supported on submanifolds, J. Funct. Anal.78 (1988), 56–94.

    Article  MathSciNet  Google Scholar 

  37. F. Ricci, and E. M. Stein,Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Funct. Anal.73 (1987), 179–194;II. Singular kernels supported on submanifolds, J. Funct. Anal.78 (1988), 56–94.

    Article  MathSciNet  Google Scholar 

  38. F. Ricci, and G. Travaglini,LpLqestimates for orbital measures and Radon transform on Lie groups and Lie algebras, (1994), Torino preprint.

    Google Scholar 

  39. A. Seeger,Degenerate Fourier integral operators in the plane, Duke Math. J.71 (1993), 685–745.

    Article  MathSciNet  Google Scholar 

  40. A. Thompson,Sobolev estimates for singular Radon transforms, J. Funct. Anal.112 (1993), 61–96.

    Article  MathSciNet  Google Scholar 

  41. A. N. Varchenko,Newton polyhedra and estimations of oscillatory integrals, Funct. Anal. Appl.10 (1976), 175–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhaäser Verlag

About this paper

Cite this paper

Phong, D.H. (1995). Regularity of Fourier Integral Operators. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_79

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics