Abstract
The purpose of this paper is to survey some developments in the study of Radon transforms. These operators and the related oscillatory integrals have long been of interest in harmonic analysis and mathematical physics. Lately, they have emerged as key analytic tools in a wide variety of problems, ranging from partial differential equations to singularity theory and probability. It is not possible for us to describe adequately the progress made in all these areas in this limited space. Instead, we shall focus on the more analytic aspects, and take the opportunity to describe some recent joint work of the author with Elias M. Stein.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Antoniono and G. Uhlmann,A functional calculus for a class of pseudo-differential operators with singular symbols, Proc. Symp. Pure Math.43 (1985), 5–16.
V. I. Arnold,Critical points of smooth functions and their normal forms, Russian Math. Surveys30 (1975), 1–75.
M. Christ,Failure of an endpoint estimate for integrals along curves, (1993) UCLA preprint.
M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms, to appear in Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ.
M. Cowling, S. Disney, G. Mauceri, and D. Müller,Damping oscillatory integrals, Invent. Math.101 (1990), 237–260.
P. Diaconis, Group representations in probability and statistics, Lecture Notes- Monograph Series, Inst. Math. Stat.11 (1988).
C. Fefferman,Monge-Ampère equations, the Bergman kernel, and the geometry of pseudo convex domains, Ann. of Math.103 (1976), 395–416.
I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro,Integral geometry on k-planes, Funct. Anal. Appl.1 (1967), 14–27.
D. Geller, and E. M. Stein,Estimates for singular convolution operators on the Heisenberg group, Math. Ann.267 (1984), 1–15.
A. Greenleaf, and A. Seeger,Fourier integral operators with fold singularities, (1993) preprint.
A. Greenleaf, and G. Uhlmann,Non-local inversion formulas for the X-ray transform, Duke Math. J.58 (1989), 205–240.
A. Greenleaf, and G. Uhlmann,Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal.89 (1990), 202–232.
A. Greenleaf, and G. Uhlmann,Composition of some singular Fourier integral operators and estimates for the X-ray transform, I, Ann. Inst. Fourier (Grenoble)40 (1990); II, 1991 preprint.
A. Greenleaf, and G. Uhlmann,Composition of some singular Fourier integral operators and estimates for the X-ray transform, I, Ann. Inst. Fourier (Grenoble)40 (1990); II, 1991 preprint.
V. Guillemin, Cosmology in (2 + 1) dimensions, cyclic models, and deformations ofM2,1, Ann. of Math. Stud. 121 (1989), Princeton Univ. Press, Princeton, NJ.
V. Guillemin and G. Uhlmann,Oscillatory integrals with singular symbols, Duke Math. J.48 (1981), 251–257.
L. Hörmander,Oscillatory integrals and multipliers on FLp, Arkiv. Mat.11 (1973), 1–11.
L. Hörmander, The Analysis of Linear Partial Differential Operators I-IV, Springer-Verlag, Berlin and New York (1985).
V. N. Karpushkin,Uniform estimates of oscillatory integrals with parabolic or hyperbolic phases, J. Soviet Math.33 (1986), 1159–1188.
V. N. Karpushkin,A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables, J. Soviet Math.35 (1986), 2809–2826.
C. Kenig, G. Ponce, and L. Vega,Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991), 33–69.
A. G. Kushnirenko,Polyèdres de Newton et nombres de Milnor, Invent. Math.32 (1976), 1–31.
R. Melrose, and M. Taylor,Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. in Math.55 (1985), 242–315.
R. Melrose, and G. Uhlmann,Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math.32 (1979), 483–519.
J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud.61 (1968), Princeton Univ. Press, Princeton, NJ.
D. Oberlin,Convolution estimates for some measures on curves, Proc. Amer. Math. Soc.99 (1987), 56–60.
Y. Pan, and C. Sogge,Oscillatory integrals associated to folding canonical relations, Colloq. Math.60 (1990), 413–419.
D. H. Phong, and E. M. Stein,Hilbert integrals, singular integrals, and Radon transforms, Acta Math.157 (1986), 99–157; Invent. Math.86 (1986), 75–113.
D. H. Phong, and E. M. Stein,Hilbert integrals, singular integrals, and Radon transforms, Acta Math.157 (1986), 99–157; Invent. Math.86 (1986), 75–113.
D. H. Phong, and E. M. Stein,Radon transforms and torsion, Int. Math. Res. Notices4 (1991), 49–60.
D. H. Phong, and E. M. Stein,Oscillatory integrals with polynomial phases, Invent. Math.110 (1992), 39–62.
D. H. Phong, and E. M. Stein,Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. (2) 140 (1994), 703–722.
D. H. Phong, and E. M. Stein,On a stopping process for oscillatory integrals, J. Geom. Anal.4 (1994), 105–120.
D. H. Phong, and E. M. Stein,Operator versions of the van der Corput lemma and Fourier integral operators, Math. Res. Lett.1 (1994), 27–33.
D. H. Phong, and E. M. Stein, in preparation.
F. Ricci, and E. M. Stein,Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Funct. Anal.73 (1987), 179–194;II. Singular kernels supported on submanifolds, J. Funct. Anal.78 (1988), 56–94.
F. Ricci, and E. M. Stein,Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Funct. Anal.73 (1987), 179–194;II. Singular kernels supported on submanifolds, J. Funct. Anal.78 (1988), 56–94.
F. Ricci, and G. Travaglini,Lp —Lqestimates for orbital measures and Radon transform on Lie groups and Lie algebras, (1994), Torino preprint.
A. Seeger,Degenerate Fourier integral operators in the plane, Duke Math. J.71 (1993), 685–745.
A. Thompson,Sobolev estimates for singular Radon transforms, J. Funct. Anal.112 (1993), 61–96.
A. N. Varchenko,Newton polyhedra and estimations of oscillatory integrals, Funct. Anal. Appl.10 (1976), 175–196.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Birkhaäser Verlag
About this paper
Cite this paper
Phong, D.H. (1995). Regularity of Fourier Integral Operators. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_79
Download citation
DOI: https://doi.org/10.1007/978-3-0348-9078-6_79
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-9897-3
Online ISBN: 978-3-0348-9078-6
eBook Packages: Springer Book Archive