Skip to main content

Chemotaxis in Azospirillum

  • Chapter
Handbook for Azospirillum
  • 1714 Accesses

Abstract

The ability of Azospirillum to colonize the roots of plants depends on motility and chemotaxis. Azospirillum cells are motile and capable of chemotaxis toward organic acids, sugars, and some aminoacids. Azospirillum is also able to navigate gradients of oxygen, alternative electron acceptors, and redox active compounds. Most attractants and repellents described thus far for this bacterial genus include compounds that affect intracellular metabolism, leading to the suggestion that most taxis responses correspond to energy taxis in Azospirillum spp. Several spatial and temporal gradient assays that can be implemented as quantitative methods are available to characterize taxis responses in Azospirillum species. The analysis of complete sequence genomes of several Azospirillum species reveals that taxis responses are coordinated by multiple chemotaxis pathways. All genomes also possess a chemotaxis pathway that is predicted to regulate alternative cellular functions other than flagellar motility. Genome analyses indicate that all Azospirillum spp. sequenced to date encode for an extremely large repertoire of putative chemotaxis receptors, which is likely contributing to explaining their ubiquitous distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler J, Tso WW (1974) “Decision”-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 184:1292–1294

    Article  CAS  PubMed  Google Scholar 

  • Alexandre G (2010) Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156:2283–2293

    Article  CAS  PubMed  Google Scholar 

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182:6042–6048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barak R, Nur I, Okon Y, Henis Y (1982) Aerotactic response of Azospirillum brasilense. J Bacteriol 152:643–649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1994) Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl Environ Microbiol 60:2120–2131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Bespalov VA, Zhulin IB, Taylor BL (1996) Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci U S A 93:10084–10089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bible AN, Stephens BB, Ortega DR, Xie Z, Alexandre G (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190:6365–6375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bible A, Russell MH, Alexandre G (2012) The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. J Bacteriol 194:3343–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Muller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 109:3766–3771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greer-Phillips SE, Stephens BB, Alexandre G (2004) An energy taxis transducer promotes root colonization by Azospirillum brasilense. J Bacteriol 186:6595–6604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krell T, Lacal J, Munoz-Martinez F, Reyes-Darias JA, Cadirci BH, Garcia-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Lopez-de-Victoria G, Lovell CR (1993) Chemotaxis of Azospirillum species to aromatic compounds. Appl Environ Microbiol 59:2951–2955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell JG (2002) The energetics and scaling of search strategies in bacteria. Am Nat 160:727–740

    Article  PubMed  Google Scholar 

  • Moens S, Michiels K, Keijers V, Van Leuven F, Vanderleyden J (1995) Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol 177:5419–5426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moens S, Schloter M, Vanderleyden J (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J Bacteriol 178:5017–5019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okon Y, Cakmakci L, Nur I, Chet I (1980) Aerotaxis and chemotaxis of Azospirillum brasilense: a note. Microb Ecol 6:277–280

    Article  CAS  PubMed  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell MH, Bible AN, Fang X, Gooding JR, Campagna SR, Gomelsky M, Alexandre G (2013) Integration of the second messenger c-di-GMP into the chemotactic signaling pathway. mBio 4:e00001–e00013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sant’Anna FH, Almeida LG, Cecagno R, Reolon LA, Siqueira FM, Machado MR, Vasconcelos AT, Schrank IS (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409

    Article  PubMed Central  PubMed  Google Scholar 

  • Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens BB, Loar SN, Alexandre G (2006) Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J Bacteriol 188:4759–4768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P, Vanderleyden J (1999) Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol Microbiol 32:703–714

    Article  PubMed  Google Scholar 

  • Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  CAS  PubMed  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, Gonzalez V, Mavingui P, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wisniewski-Dye F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, Gonzalez V, Mavingui P (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel) 3:576–602

    Article  CAS  Google Scholar 

  • Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Ulrich LE, Zhulin IB, Alexandre G (2010) PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci U S A 107:2235–2240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhulin IB, Bespalov VA, Johnson MS, Taylor BL (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J Bacteriol 178:5199–5204

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Alexandre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexandre, G. (2015). Chemotaxis in Azospirillum . In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_6

Download citation

Publish with us

Policies and ethics