Abstract
Modeling videos and image-sets as linear subspaces has proven beneficial for many visual recognition tasks. However, it also incurs challenges arising from the fact that linear subspaces do not obey Euclidean geometry, but lie on a special type of Riemannian manifolds known as Grassmannian. To leverage the techniques developed for Euclidean spaces (e.g., support vector machines) with subspaces, several recent studies have proposed to embed the Grassmannian into a Hilbert space by making use of a positive definite kernel. Unfortunately, only two Grassmannian kernels are known, none of which -as we will show- is universal, which limits their ability to approximate a target function arbitrarily well. Here, we introduce several positive definite Grassmannian kernels, including universal ones, and demonstrate their superiority over previously-known kernels in various tasks, such as classification, clustering, sparse coding and hashing.
Chapter PDF
Similar content being viewed by others
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer (1984)
Chikuse, Y.: Statistics on Special Manifolds. Springer (2003)
Gopalan, R., Li, R., Chellappa, R.: Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Analysis and Machine Intelligence (2014)
Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proc. Int. Conference on Machine Learning (ICML), pp. 376–383 (2008)
Harandi, M., Sanderson, C., Shen, C., Lovell, B.C.: Dictionary learning and sparse coding on grassmann manifolds: An extrinsic solution. In: Proc. Int. Conference on Computer Vision (ICCV) (December 2013)
Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2705–2712 (2011)
Helmke, U., Hüper, K., Trumpf, J.: Newtons’s method on Grassmann manifolds. Preprint: [arXiv:0709.2205] (2007)
Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: CVPR, pp. 73–80 (2013)
Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Optimizing over radial kernels on compact manifolds. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2014)
Jhuang, H., Garrote, E., Yu, X., Khilnani, V., Poggio, T., Steele, A.D., Serre, T.: Automated home-cage behavioural phenotyping of mice. Nature Communications 1, 68 (2010)
Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Trans. Pattern Analysis and Machine Intelligence 34(6), 1092–1104 (2012)
Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. Journal of Machine Learning Research 7, 2651–2667 (2006)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Scholkopf, B.: The kernel trick for distances. In: Proc. Advances in Neural Information Processing Systems (NIPS), pp. 301–307 (2001)
Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D.P., Williamson, B. (eds.) COLT/EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)
Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression database. IEEE Trans. Pattern Analysis and Machine Intelligence 25(12), 1615–1618 (2003)
Steinwart, I., Christmann, A.: Support vector machines. Springer (2008)
Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In: AAAI Workshop on Artificial Intelligence for Web Search, pp. 58–64 (2000)
Subbarao, R., Meer, P.: Nonlinear mean shift over Riemannian manifolds. Int. Journal of Computer Vision 84(1), 1–20 (2009)
Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 33(11), 2273–2286 (2011)
Vemulapalli, R., Pillai, J.K., Chellappa, R.: Kernel learning for extrinsic classification of manifold features. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1782–1789 (2013)
Wolf, L., Shashua, A.: Learning over sets using kernel principal angles. Journal of Machine Learning Research 4, 913–931 (2003)
Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Processing (TIP) 18(8), 1905–1910 (2009)
Zheng, S., Zhang, J., Huang, K., He, R., Tan, T.: Robust view transformation model for gait recognition. In: International Conference on Image Processing (ICIP), pp. 2073–2076 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
1 Electronic Supplementary Material
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Harandi, M.T., Salzmann, M., Jayasumana, S., Hartley, R., Li, H. (2014). Expanding the Family of Grassmannian Kernels: An Embedding Perspective. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8695. Springer, Cham. https://doi.org/10.1007/978-3-319-10584-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-10584-0_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10583-3
Online ISBN: 978-3-319-10584-0
eBook Packages: Computer ScienceComputer Science (R0)