Skip to main content

Mixing Graphics and Compute for Real-Time Multiview Human Body Tracking

  • Conference paper
Computer Vision and Graphics (ICCVG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Included in the following conference series:

Abstract

This paper presents an effective algorithm for 3D model-based human motion tracking using a GPU-accelerated particle swarm optimization. The tracking involves configuring the 3D human model in the pose described by each particle and then rasterizing it in each camera view. In order to accelerate the calculation of the fitness function, which is the most computationally demanding operation of the algorithm, the rendering of the 3D model has been realized using CUDA-OpenGL interoperability. Since CUDA and OpenGL both run on GPU and share data through common memory the CUDA-OpenGL interoperability is very fast. We demonstrate that thanks to GPU hardware rendering the time needed for calculation of the objective function is shorter. Owing to more precise rendering of the 3D model as well as better extraction of its edges the human motion tracing is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S.: Performance evaluation of image processing algorithms on the GPU. Journal of Structural Biology 164(1), 153–160 (2008)

    Article  Google Scholar 

  2. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Int. Conf. on Pattern Recognition, pp. 126–133 (2000)

    Google Scholar 

  3. Fung, J., Mann, S.: Using graphics devices in reverse: GPU-based image processing and computer vision. In: IEEE Int. Conf. on Multimedia and Expo., pp. 9–12 (2008)

    Google Scholar 

  4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Google Scholar 

  5. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the motion of 3D articulated figure. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 155–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Kwolek, B., Krzeszowski, T., Gagalowicz, A., Wojciechowski, K., Josinski, H.: Real-time multi-view human motion tracking using particle swarm optimization with resampling. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds.) AMDO 2012. LNCS, vol. 7378, pp. 92–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Comm. ACM 55(6), 61–69 (2012)

    Article  Google Scholar 

  8. Rymut, B., Kwolek, B.: GPU-supported object tracking using adaptive appearance models and Particle Swarm Optimization. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 227–234. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated human motion tracking using particle filter combined with PSO. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 426–437. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Stam, J.: What every CUDA programmer should know about OpenGL. In: GPU Technology Conference (2009)

    Google Scholar 

  11. Wu, C., Aghajan, H.: Real-time human pose estimation: A case study in algorithm design for smart camera networks. Proc. of the IEEE 96(10), 1715–1732 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rymut, B., Kwolek, B. (2014). Mixing Graphics and Compute for Real-Time Multiview Human Body Tracking. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_64

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics