Skip to main content

Cerebellar Neurogenesis

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

The mechanisms of cerebellar neurogenesis have been redefined in the last few years, showing the precise spatio-temporal sequence of neuronal generation from neurochemically heterogeneous pools of progenitors. Here we describe these processes, highlighting the principal strategies used within this system to generate appropriate cell numbers and phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helixloop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738

    Article  CAS  PubMed  Google Scholar 

  • Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system in relation to its evolution, structures and functions. CRC, Boca Raton

    Google Scholar 

  • Alvarez Otero R, Sotelo C, Alvarado-Mallart RM (1993) Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol 333:597–615

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390(6656):169–172

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbe HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127(5):1039–1048

    CAS  PubMed  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401(6749):164–168

    Article  CAS  PubMed  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    Article  PubMed  Google Scholar 

  • Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R (2008) Purkinje cell subtype specification in the cerebellar cortex: EBF2 acts to repress the zebrin II-negative Purkinje cell phenotype. Neuroscience 153:721–732

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Sillitoe RV, Croci L, Badaloni A, Consalez G, Hawkes R (2009) Purkinje cell phenotype restricts the distribution of unipolar brush cells. Neuroscience 164:1496–1508

    Google Scholar 

  • Consalez GG, Hawkes R (2013) The compartmental restriction of cerebellar interneurons. Front Neural Circ 6:123

    Google Scholar 

  • Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, Corradi A, Rossi F, Hawkes R, Consalez GG (2006) A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development 133:2719–2729

    Google Scholar 

  • Croci L, Barili V, Chia D, Massimino L, van Vugt R, Masserdotti G, Longhi R, Rotwein P, Consalez GG (2011) Local insulin-like growth factor I expression is essential for Purkinje neuron survival at birth. Cell Death Differ 18:48–59

    Google Scholar 

  • Dahmane N, Ruiz-i-Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    Google Scholar 

  • Englund CM, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  CAS  PubMed  Google Scholar 

  • Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M, Kowalczk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    Article  CAS  PubMed  Google Scholar 

  • Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, Litingtung Y, Chiang C (2013) The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell 27(3):278–292

    Article  CAS  PubMed  Google Scholar 

  • Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, Zordan P, Barili V, Albieri I, Guillemot F, Rossi F, Consalez GG (2012) Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development 139:2308–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Simada M, Nakanuna T (1966) 3H-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layers of the mouse cerebellum. J Comp Neurol 128:191–209

    Article  CAS  PubMed  Google Scholar 

  • Gao WO, Hatten ME (1994) Immortalizing oncogenes subvert the establishement of granule cell identity in developing cerebellum. Development 120:1059–1070

    CAS  PubMed  Google Scholar 

  • Gao WO, Heintz N, Hatten ME (1991) Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6(5):705–715

    Article  CAS  PubMed  Google Scholar 

  • Hallonet M, Alvarado-Mallart RM (1997) The chick/quail chimeric system: a model for early cerebellar development. Perspect Dev Neurobiol 5(1):17–31

    CAS  PubMed  Google Scholar 

  • Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    CAS  PubMed  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408

    Article  CAS  PubMed  Google Scholar 

  • Helms AW, Johnsos JE (1998) Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 125(5):919–928

    CAS  PubMed  Google Scholar 

  • Henke RM, Savage TK, Meredith DM, Glasgow SM, Hori K, Dumas J, MacDonald RJ, Johnson JE (2009) Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development 136:2945–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino M (2012) Neuronal subtype specification in the cerebellum and dorsal hindbrain. Dev Growth Differ 54(3):317–326

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CVE, Kawaguchi Y, Nakao K, Nabeshima YI (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Liu J, Ketova T, Fleming JT, Grover VK, Cooper MK, Litingtung Y, Chiang C (2010) Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A 107(18):8422–8427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21(2):527–540

    CAS  PubMed  Google Scholar 

  • Larouche M, Hawkes R (2006) From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum 5(2):77–88

    Article  CAS  PubMed  Google Scholar 

  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  CAS  PubMed  Google Scholar 

  • Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, Rossi F (2009) Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci 29(21):7079–7091

    Article  CAS  PubMed  Google Scholar 

  • Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Lao Z, Joyner A (2005) New regulatory interactions and cellular responses in the isthmic organizer region revealed by altering Gbx2 expression. Development 132(8):1971–1981

    Article  CAS  PubMed  Google Scholar 

  • Lin JC, Cai L, Cepko CL (2001) The external granule layer of the developing chick cerebellum generates granule cells and cells of the isthmus and rostral hindbrain. J Neurosci 21(1):159–168

    CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  CAS  PubMed  Google Scholar 

  • Machold RP, Kittell DJ, Fishell GJ (2007) Antagonism between notch and bone morphogenetic protein receptor signalling regulates neurogenesis in the cerebellar rhombic lip. Neural Dev 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6(6):971–981

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126(6):1189–1200

    CAS  PubMed  Google Scholar 

  • Miale IR, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236

    Article  CAS  PubMed  Google Scholar 

  • Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A 73(1):208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napieralski JA, Eisenman LM (1993) Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors? Dev Dyn 197(4):244–254

    Article  CAS  PubMed  Google Scholar 

  • Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 434(3):329–341

    Article  CAS  PubMed  Google Scholar 

  • Nunzi MG, Shigemoto R, Mugnaini E (2002) Differential expression of calretinin and metabotropic glutamate receptor mGluR1 alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol 451(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Palay S, Chan-Palay V (1974) Cerebellar cortex. Springer, Berlin

    Book  Google Scholar 

  • Rakic P (1990) Principles of neural cell migration. Experientia 46(9):882–891

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Verteébreés. Maloine, Paris

    Google Scholar 

  • Sekerkovà G, Ilijic E, Mugnaini E (2004) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127:845–858

    Article  PubMed  Google Scholar 

  • Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, Hamaguchi A, Inoue YU, Inoue T, Miyashita S, Fujiyama T, Yamada M, Chapman H, Campbell K, Magnuson MA, Wright CV, Kawaguchi Y, Ikenaka K, Takebayashi H, Ishiwata S, Ono Y, Hoshino M (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 5:3337

    Article  PubMed  Google Scholar 

  • Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F (2010) Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci 44(4):362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeyne RJ, Chu T, Lewin A, Bian F, Sanlioglu S, Kunsch C, Lira SA, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6(3):230–251

    Article  CAS  PubMed  Google Scholar 

  • Sonmez E, Herrup K (1984) Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Brain Res 314(2):271–283

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    Article  CAS  PubMed  Google Scholar 

  • Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL (2011) Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci 31(30):11055–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel MW, Sunter K, Herrup K (1989) Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the thropic rescue of granule cells from target-related cell death. J Neurosci 9(10):3454–3462

    CAS  PubMed  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi H (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron 22:103–114

    Article  CAS  PubMed  Google Scholar 

  • Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24:466–478

    Article  PubMed  Google Scholar 

  • Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJT, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126(20):4395–4404

    CAS  PubMed  Google Scholar 

  • Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T et al (2014) Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34:4786–47800

    Article  PubMed  Google Scholar 

  • Zhang L, Goldman JE (1996a) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54

    Article  PubMed  Google Scholar 

  • Zhang L, Goldman JE (1996b) Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. J Comp Neurol 370:536–550

    Article  CAS  PubMed  Google Scholar 

  • Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KL’s research is funded by a grant from Ricerca Fondo per l’Incentivazione della Ricerca di Base (n. RBFR10A01S). GGC’s cerebellar research is funded by the Italian Telethon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giacomo Consalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leto, K., Hawkes, R., Consalez, G.G. (2016). Cerebellar Neurogenesis. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_13

Download citation

Publish with us

Policies and ethics