Abstract
In this chapter, advances in the most important imaging techniques that can be applied to fruit and vegetable inspection are addressed. The review begins with the external inspection, dominated by the use of computer vision, which analyses morphological features and surface attributes. Then, inspection goes through the pericarp and reaches the closest inner layers by the application of hyperspectral imaging, which provides complementary information by analysing both external and internal attributes. At this location, the microscale inspection is achieved by optical coherence tomography, which performs high resolution imaging of the microstructure. Two techniques are finally reviewed as being capable of evaluating the most internal regions, providing cross-sectional images of the complete sample at both macro- and microscale. X-ray imaging is based on the contrast arising from the differences in the atomic number, density and thickness of the internal structures and tissues, revealing morphological and structural aspects. For the magnetic resonance imaging, the image contrast can be weighted in several resonance parameters, which broadens the field of applications. Therefore, in addition to morphological and structural features, the chemical composition and tissue characteristics of different nature can be studied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Mallahi A, Kataoka T, Okamoto H, Shibata Y (2010) Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosystems Eng 105(2):257–265
Baiano A, Terracone C, Peri G, Romaniello R (2012) Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput Electron Agric 87(0):142–151
Baranowski P, Mazurek W, Wozniak J, Majewska U (2012) Detection of early bruises in apples using hyperspectral data and thermal imaging. J Food Eng 110(3):345–355
Baranowski P, Mazurek W, Pastuszka-Woźniak J (2013) Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biol Technol 86(0):249–258
Barreiro P, Zheng C, Sun D-W, Hernández-Sánchez N, Pérez-Sánchez JM, Ruiz-Cabello J (2008) Non-destructive seed detection in mandarins: comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biol Technol 47:189–198
Blasco J (2009) Development of a machine for the automatic sorting of pomegranate arils based on computer vision. J Food Eng 90:27–34
Blasco J, Aleixos N, Moltó E (2003) Machine vision system for automatic quality grading of fruit. Biosytems Eng 85(4):415–423
Blasco J, Aleixos N, Cubero S, Moltó E (2009) Automatic sorting of satsuma segments using computer vision and morphlogical features. Comput Electron Agric 66:1–8
Boldrini B, Kessler W, Rebnera K, Kessler RW (2012) Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications. J Near Infrared Spectrosc 20(5):483–508
Brescia AM, Sacco A (2010) Chapter 13—ripening of table olives: use of magnetic resonance imaging (MRI). In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Elsevier Inc, San Diego, pp 109–116. ISBN 978-0-12-374420-3
Brescia MA, Pugliese T, Hardy E, Sacco A (2007) Compositional and structural investigations of ripening of table olives, Bella della Daunia, by means of traditional and magnetic resonance imaging analyses. Food Chem 105(1):400–404
Cen H, Lu R, Mendoza FA, Ariana DP (2012) Assessing multiple quality attributes of peaches using optical absorption and scattering properties. Trans ASABE 55(2):647–657
Cen H, Lu R, Mendoza F, Beaudry RM (2013) Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue. Postharvest Biol Technol 85:30–38
Cho B-K, Kim MS, Baek I-S, Kim D-Y, Lee W-H, Kim J, Bae H, Kim Y-S (2013) Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol Technol 76(0):40–49
Chuang C-L, Ouyang C-S, Lin T-T, Yang M-M, Yang E-C, Huang T-W, Kuei C-F, Luke A, Jiang J-A (2011) Automatic X-ray quarantine scanner and pest infestation detector for agricultural products. Comput Electron Agric 77:41–59
Ciampa A, Dell’Abate MT, Masetti O, Valentini M, Sequi P (2010) Seasonal chemical–physical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem 122:1253–1260
Cubero S, Aleixos N, Moltó E, Gómez-Sanchís J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproces Technol 4:487–504
Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna JAF (2013) Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl Spectrosc Rev 48(2):142–159
Defraeye T, Lehmann V, Gross D, Holat C, Herremans E, Verboven P, Verlinden B, Nicolai B (2013) Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol Technol 75:96–105
Diezma B, Lleó L, Roger JM, Herrero-Langreo A, Lunadei L, Ruiz-Altisent M (2013) Examination of the quality of spinach leaves using hyperspectral imaging. Postharvest Biol Technol 85:8–17
Donis-González IR, Guyer DE, Pease A, Barthel F (2014) Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging. Biosystems Eng 117:104–113
Drexler W, Morgner U, Kärtner F-X, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24(17):1221–1223
Dunn MT (2007) Applications of vision sensing in agriculture. Ph.D. dissertation. University of Southern Queensland
El Masry G, Cubero S, Moltó E, Blasco J (2012) In-line sorting of irregular potatoes by using automated computer-based machine vision system. J Food Eng 112:60–68
Espinoza M (2003) Researcher seeks to solve tomato shape riddle, develop new varieties. Ohio State University Extension. http://www.ag.ohio-state.edu/~news/story.php?id=2673. Accessed 28 Oct 2010
Esquerre C, Gowen AA, Downey G, O'Donnell CP (2012) Wavelength selection for development of a near infrared imaging system for early detection of bruise damage in mushrooms (Agaricus bisporus). J Near Infrared Spectrosc 20(5):537–546
Fanourakis NE, Tzifaki EE (1993) Correlated inheritance of fruit neck with fruit length and linkage relations with 10 other characteristics of cucumber. Euphytica 65:71–77
Fathi M, Mohebbi M, Razavi SMA (2011) Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food Bioprocess Technol 4:1357–1366
Ford HD, Tatam RP, Landahl S, Terry LA (2011) Investigation of disease in stored onions using optical coherence tomography. Proc IV Int Conf Postharvest Unltd 2011:247–254
Fujimoto J-G, Pitris C, Boppart S-A, Brezinski M (2010) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25
Goñi SM, Purlis E, Salvadori VO (2007) Three-dimensional reconstruction of irregular foodstuffs. J Food Eng 82:536–547
Gowen AA, O’Donnell CP, Taghizadeh M, Gaston E, O’Gorman A, Cullen PJ, Frias JM, Esquerre C, Downey G (2008a) Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus bisporus) during storage. Sens Instrum Food Qual Saf 2(3):133–143
Gowen AA, O’Donnell CP, Taghizadeh M, Cullen PJ, Frias JM, Downey G (2008b) Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). J Chemometr 22(3–4):259–267
Gui J, Zhou W (2010) Fruit shape classification using Zernike moments. Proc SPIE 7820:782015
Guo H, Tan Y, Li W (2014) Chapter 12: surface texture detection of double-feature apple based on computer vision. Proceedings of 3rd international conference on multimedia technology (ICMT 2013). Springer, Berlin, pp. 117–127
Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle M (2004) Detection of freeze injury in oranges by magnetic resonance imaging of moving samples. Appl Magn Reson 26:431–445
Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle M (2005) Detection of seeds in citrus using magnetic resonance imaging under motion conditions and improvement with motion correction. Concepts in magnetic resonance. Part B Magn Reson Eng 26B:81–92
Hernández-Sánchez N, Barreiro P, Ruiz-Cabello J (2006) On-line identification of seeds in Mandarins with magnetic resonance imaging. Biosyst Eng 95:529–536
Hernández-Sánchez N, Hills BP, Barreiro P, Marigheto N (2007) An NMR study on internal browning in pears. Postharvest Biol Technol 44:260–270
Hernández-Sánchez N, Barreiro P, Ruiz-Cabello J (2009) NMR for internal quality evaluation in horticultural products. In: Optical monitoring of fresh and processed agricultural crops. CRC Press, pp. 423–468. ISBN: 978-1-4200-5402-6
Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden BE, Wevers M, Hertog MLATM, Nicolaï BM (2013a) Characterisation of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biol Technol 75:114–124
Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT, Hertog MLATM, Verlinden BE, Bongaers E, Wevers M, Nicolaï BM (2013b) X-ray CT for quantitative food microstructure engineering: the apple case. Nucl Instrum Methods Phys Res Sect B 324:88–94. http://dx.doi.org/10.1016/j.nimb.2013.07.035
Herremans E, Melado-Herreros A, Defraeye T, Verlinden B, Hertog M, Verboven P, Val J, Encarnación Fernández-Valle M, Bongaers E, Estrade P, Wevers M, Barreiro P, Nicolaï BM (2014) Comparison of X-ray CT and MRI of watercore disorder of differentapple cultivars. Postharvest Biol Technol 87:42–50
Hoffmann T, Wormans G, Fürll C, Poller J (2005) A system for determining starch in potatoes online. IAg Eng LUA LU of Ag 37(2):34–43. http://vddb.library.lt/fedora/get/LT-eLABa-0001:J.04~2005~ISSN_1392-1134.V_37.N_2.PG_34-43/DS.002.1.01.ARTIC. Accessed 21 July 2014
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178–1181
Huang H, Yu H, Xu H, Ying Y (2008) Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J Food Eng 87(3):303–313
Jafari A, Zarazadeh MR, Fazayeli A (2012) Orange grading based on visual texture features. CIGR-AGENG 2012, Valencia
Jarimopas B, Jaisin N (2008) An experimental machine vision system for sorting sweet tamarind. J Food Eng 89(3):291–297
Jiang J-A, Chang H-Y, Ke-Han Wu, Ouyang C-S, Yang M-M, Yang E-C, Chen T-W, Lin T-T (2008) An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput Electron Agric 60:190–200
Jiang L, Zhu B, Cheng X, Luo Y, tao Y (2009) 3D surface reconstruction and aanlysis in automated apple stem-end/calyx identification. Trans ASABE 52(5):1775–1784
Kang SP, East AR, Trujillo FJ (2008) Colour vision system evaluation of bicolour fruit: a case study with ‘B74’ mango. Postharvest Biol Technol 49:77–85
Kang S, Lee K, Son J, Kim MS (2011) Detection of fecal contamination on leafy greens by hyperspectral imaging. Procedia Food Sci 1(0):953–959
Khoshroo A, Keyhani A, Zoroofi RA, Rafiee S, Zamani Z, Alsharif MR (2009) Classification of pomegranate fruit using texture analysis of MR images. Agric Eng Int. XI:Manuscript 1182. (March 2009)
Khoshroo A, Keyhani A, Zoroofi RA, Yaghoobi G (2011) Nondestructive inspection of pomegranate maturity using magnetic resonance imaging and neural networks. CIGR Section VI international symposium on towards a sustainable food chain, food process, bioprocessing and food quality management. Nantes, France. April 18–20, 2011
Kim MS, Chen Y-R, Cho B-K, Chao K, Yang C-C, Lefcourt AM, Chan D (2007) Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples. Sens Instrum Food Qual Saf 1:151–159
Kotwaliwale N, Curtis E, Othman S, Naganathan GK, Subbiah J (2012) Magnetic resonance imaging and relaxometry to visualize internal freeze damage to pickling cucumber. Postharvest Biol Technol 68:22–31
Landahl S, Terry LA, Ford HD (2012) Investigation of diseased onion bulbs using data processing of optical coherence tomography images. Acta Hortic 969:261–270
Lara MA, Lleó L, Diezma-Iglesias B, Roger JM, Ruiz-Altisent M (2013) Monitoring spinach shelf-life with hyperspectral image through packaging films. J Food Eng 119(2):353–361
Lee D-J, Schoenberger R, Archibald J, McCollum S (2008) Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging. J Food Eng 86:388–398
Leiva-Valenzuela GA, Lu R, Aguilera JM (2013) Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J Food Eng 115(1):91–98
Leónard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85:154–162
Li J, Rao X, Ying Y (2011) Detection of common defects on oranges using hyperspectral reflectance imaging. Comput Electron Agric 78(1):38–48
Lleó L, Roger JM, Herrero-Langreo A, Diezma-Iglesias B, Barreiro P (2011) Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. J Food Eng 104(4):612–620
Loeb G, Barton JK (2003) Imaging botanical subjects with optical coherence tomography: a feasibility study. Trans ASAE 46:1751–1757
Løkke MM, Seefeldt HF, Skov T, Edelenbos M (2013) Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biol Technol 75:86–95
López Camelo AF (2004) Manual for the preparation and sale of fruits and vegetables. ISSN 1010–1365 FAO agricultural services bulletin 151 FAO 2004 ISBN 92-5-104991-2. http://www.fao.org/docrep/008/y4893e/y4893e00.htm#Contents
Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, García-Navarrete OL, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol 5(4):1121–1142
Lü Q, Tang MJ, Cai JR, Zhao JW, Vittayapadung S (2011) Vis/NIR hyperspectral imaging for detection of hidden bruises on kiwifruits. Czech J Food Sci 29(6):595–602
Maguwaza LS, Ford HD, Cronje PJR, Opara UL, Landahl S, Tatam RP, Terry LA (2013) Application of optical coherence tomography to non-destructively characterize rind breakdown disorder of ‘Nules Clementine’ mandarins. Postharvest Biol Technol 84:16–21
Martynenko AI (2011) Porosity evaluation of ginseng roots from real-time imaging and mass measurements. Food Bioprocess Technol 4:417–428
Matiacevich S, Celis Cofré D, Silva P, Enrione J, Osorio F (2013) Quality parameters of six cultivars of blueberry using computer vision. Intl J Food Sci 2013:8
Meglinski IV, Buranachai C, Terry LA (2010) Plant photonics: application of optical coherence tomography to monitor defects and rots in onion. Laser Phys Lett 7:307–310
Melado-Herreros A, Muñoz-García M, Blanco A, Val J, Fernandez-Valle M, Barreiro P (2013) Assessment of watercore development in apples with MRI: effect of fruit location in the canopy. Postharvest Biol Technol 86:125–133
Mendoza F, Dejmek P, Aguilera JM (2007) Color and image texture analysis in classification of commercial potato chips. Food Res Intl 40:1146–54
Mendoza F, Lu R, Ariana D, Cen H, Bailey B (2011) Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol Technol 62(2):149–160
Menesatti P, Costa C, Paglia G, Pallotino F, D’Andrea S, Rimatori V, Aguzzi J (2008) Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Eng 101:417–424
Milczarek R, Saltveit ME, Casey Garvey T, McCarthy MJ (2009) Assessment of tomato pericarp mechanical damage using multivariate analysis of magnetic resonance images. Postharvest Biol Technol 52:189–195
Mizushima A, Lu R (2013) An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput Electron Agr 94:29–37
Moreda GP, Muñoz MA, Ruiz-Altisent M, Perdigones A (2012) Horticultural produce shape determination using computer vision—a review. J Food Eng 108:245–261
Musse M, Quellec Sp, Cambert M, Devaux M-FO, Lahaye M, Mariette F (2009a) Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry. Postharvest Biol Technol 53:22–35
Musse M, Quellec Sp, Devaux M-FO, Cambert M, Lahaye M, Mariette FO (2009b) An investigation of the structural aspects of the tomato fruit by means of quantitative nuclear magnetic resonance imaging. Magn Reson Imaging 27:709–719
Musse M, De Guio FO, Quellec SP, Cambert M, Challois S, Davenel A (2010) Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magn Reson Imaging 28:1525–1534
Nandi CS, Tudu B, Koley C (2012). An automated machine vision based system for fruit sorting and grading. 6th International Conference on Sensing Technology, pp 195–200
Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46(2):99–118
Nielsen MS, Christensen LB, Feidenhans’l R (2014) Frozen and defrosted fruit revealed with X-ray dark-field radiography. Food Control 39:222–226
NIVAP Holland (Netherlands Potato Consultative Foundation) (2014) Tuber characteristics determining quality. http://www.nivaa.nl/uk/about_potatoes/agronomy/on_the_road_to_potato_processing/tuber_characteristics. Accessed 21 July 2014
Okayama T, Qiao J, Tanaka H, Kondo N, Shibusawa S (2006) Classification of shape of bell pepper by machine vision system. Agr Inf Res 15(2):113–122
Opara UL, Pathare PB (2014) Bruise damage measurement and analysis of fresh horticultural produce—a review. Postharvest Biol Technol 91:9–24
Peng Y, Zhao J, Dhakal S, Zhou T (2012) Real-time detection of natural bruises in apple surface using machine vision. ASABE, Dallas
Piñeiro M, Díaz Ríos LB (2004) Manual para multiplicadores. Servicio de Calidad de los Alimentos y Normas Alimentarias (ESNS) Dirección de Alimentación y Nutrición. FAO. http://www.fao.org/docrep/007/y5488s/y5488s00.htm#Contents
Quevedo R, Mendoza F, Aguilera JM, Chanona J, Gutiérrez-López G (2008) Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. J Food Eng 84:509–515
Rajkumar P, Wang N, Eimasry G, Raghavan GSV, Gariepy Y (2012) Studies on banana fruit quality and maturity stages using hyperspectral imaging. J Food Eng 108(1):194–200
Riyadi S, Ishak AJ, Mustafa MM, Hussain A (2008) Wavelet-based feature extraction technique for fruit shape classification. In: Proceedings of 5th International Symposium on Mechatronics and its Applications (ISMA 08). IEEE
Rizzolo A, Vanoli M, Cortellino G, Spinelli L, Contini D, Herremans E, Bongaers E, Nemeth A, Leitner M, Verboven P, Nicolaï B, Torricelli A (2013) Characterizing the tissue of apple air-dried and osmo air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS. Innov Food Sci Emerg Technol 24:121–130
Ruiz-Altisent M, Ruiz L, Moreda GP, Lu R, Hernández-Sánchez N et al (2010) Sensors for specialty crops. Comput Electron Agr 74:176–194
Siripatrawan U, Makino Y, Kawagoe Y, Oshita S (2011) Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85(1):276–281
Slaughter DC, Obenland DM, Thompson JF, Arpaia ML, Margosan DA (2008) Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biol Technol 48:341–346
Sugiyama J, Tsuta M (2010) Chapter 11—visualization of sugar distribution of melons by hyperspectral technique. In: Sun D-W (ed) Hyperspectral imaging for food quality analysis and control. Academic, San Diego, pp 349–368
Sun D-W (2008) Computer vision technology for food quality evaluation. Academic, San Diego
Syvertsen JP, Albrigo LG, Dunlop JM, Ritenour MA, Vachon RC (2005) Growth conditions, crop load and fruit size affect sheepnosing in grapefruit. Proc Fla State Hort Soc 118:28–34
Taghizadeh M, Gowen A, Ward P, O’Donnell CP (2010) Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innov Food Sci Emerg Technol 11(3):423–431
Taglienti A, Massantini R, Botondi R, Mencarelli F, Valentini M (2009) Postharvest structural changes of Hayward kiwifruit by means of magnetic resonance imaging spectroscopy. Food Chem 114:1583–1589
Taglienti A, Vanoli M, Cortellino G, Spinelli L, Contini D, Herremans E, Bongaers E, Nemeth A, Leitner M, Verboven P, Nicolaï BM, Torricelli A (2013) Characterizing the tissue of apple air-dried and osmo-air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS. Innov Food Sci Emerg Technol. In Press
Teena M, Manickavasagan A, Mothershaw A, Hadi SE, Jayas DS (2013) Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review. Food Bioprocess Technol 6:1621–1634
Thybo AK, Andersen HJ, Karlsson AH, Donstrup S, Stodkilde-Jorgensen H (2003) Low-field NMR relaxation and NMR-imaging as tools in differentiation between potato sample and determination of dry matter content in potatoes. J Food Sci 36(3):315–322
Thybo AK, Szczypinski PM, Karlsson AH, Donstrup S, Stodkilde-Jorgensen HS, Andersen HJ (2004a) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. J Food Eng 61:91–100
Thybo AK, Jespersenb SN, Lærkec PE, Stødkilde HJ (2004b) Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magn Reson Imaging 22:1311–1317
Verboven P, Nemeth A, Abera MK, Bongaers E, Daelemans D, Estrade P, Herremans E, Hertog M, Saeys W, Vanstreels E, Verlinden B, Leitner M, Nicolaï B (2013) Optical coherence tomography visualizes microstructure of apple peel. Postharvest Biol Technol 78:123–132
Wang H, Feng H, Luo Y, Zhang A (2007) Produce surface characteristics affect product quality and safety. ISHS Acta Hort 746:131–138 (Proc IC on Qual Manag Fresh cut produce. Eds.: S Kanlayanarat et al.)
Wu D, Sun D-W (2013a) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innovative Food Sci Emerg Technol 19:1–14
Wu D, Sun D-W (2013b) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part II: applications. Innovative Food Sci Emerg Technol 19:15–28
Zhang L, McCarthy MJ (2012) Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol 67:96–101
Zhang L, McCarthy MJ (2013) Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol Technol 77:59–66
Zhao J, Qin O, Chen Q, Wang JJ (2010) Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sens Lett 8(4):570–576
Zhelev N, Barudov S (2005) Laser light scattering applications in biotechnology. Biotechnol Biotechnological Equip 19:3–8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Hernández-Sánchez, N., Moreda, G., Herre-ro-Langreo, A., Melado-Herreros, Á. (2016). Assessment of Internal and External Quality of Fruits and Vegetables. In: Sozer, N. (eds) Imaging Technologies and Data Processing for Food Engineers. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24735-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-24735-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24733-5
Online ISBN: 978-3-319-24735-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)