Skip to main content

Assessment of Internal and External Quality of Fruits and Vegetables

  • Chapter
  • First Online:
Imaging Technologies and Data Processing for Food Engineers

Abstract

In this chapter, advances in the most important imaging techniques that can be applied to fruit and vegetable inspection are addressed. The review begins with the external inspection, dominated by the use of computer vision, which analyses morphological features and surface attributes. Then, inspection goes through the pericarp and reaches the closest inner layers by the application of hyperspectral imaging, which provides complementary information by analysing both external and internal attributes. At this location, the microscale inspection is achieved by optical coherence tomography, which performs high resolution imaging of the microstructure. Two techniques are finally reviewed as being capable of evaluating the most internal regions, providing cross-sectional images of the complete sample at both macro- and microscale. X-ray imaging is based on the contrast arising from the differences in the atomic number, density and thickness of the internal structures and tissues, revealing morphological and structural aspects. For the magnetic resonance imaging, the image contrast can be weighted in several resonance parameters, which broadens the field of applications. Therefore, in addition to morphological and structural features, the chemical composition and tissue characteristics of different nature can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Mallahi A, Kataoka T, Okamoto H, Shibata Y (2010) Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosystems Eng 105(2):257–265

    Article  Google Scholar 

  • Baiano A, Terracone C, Peri G, Romaniello R (2012) Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput Electron Agric 87(0):142–151

    Article  Google Scholar 

  • Baranowski P, Mazurek W, Wozniak J, Majewska U (2012) Detection of early bruises in apples using hyperspectral data and thermal imaging. J Food Eng 110(3):345–355

    Article  Google Scholar 

  • Baranowski P, Mazurek W, Pastuszka-Woźniak J (2013) Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biol Technol 86(0):249–258

    Article  Google Scholar 

  • Barreiro P, Zheng C, Sun D-W, Hernández-Sánchez N, Pérez-Sánchez JM, Ruiz-Cabello J (2008) Non-destructive seed detection in mandarins: comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biol Technol 47:189–198

    Article  CAS  Google Scholar 

  • Blasco J (2009) Development of a machine for the automatic sorting of pomegranate arils based on computer vision. J Food Eng 90:27–34

    Article  Google Scholar 

  • Blasco J, Aleixos N, Moltó E (2003) Machine vision system for automatic quality grading of fruit. Biosytems Eng 85(4):415–423

    Article  Google Scholar 

  • Blasco J, Aleixos N, Cubero S, Moltó E (2009) Automatic sorting of satsuma segments using computer vision and morphlogical features. Comput Electron Agric 66:1–8

    Article  Google Scholar 

  • Boldrini B, Kessler W, Rebnera K, Kessler RW (2012) Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications. J Near Infrared Spectrosc 20(5):483–508

    CAS  Google Scholar 

  • Brescia AM, Sacco A (2010) Chapter 13—ripening of table olives: use of magnetic resonance imaging (MRI). In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Elsevier Inc, San Diego, pp 109–116. ISBN 978-0-12-374420-3

    Chapter  Google Scholar 

  • Brescia MA, Pugliese T, Hardy E, Sacco A (2007) Compositional and structural investigations of ripening of table olives, Bella della Daunia, by means of traditional and magnetic resonance imaging analyses. Food Chem 105(1):400–404

    Article  CAS  Google Scholar 

  • Cen H, Lu R, Mendoza FA, Ariana DP (2012) Assessing multiple quality attributes of peaches using optical absorption and scattering properties. Trans ASABE 55(2):647–657

    Article  Google Scholar 

  • Cen H, Lu R, Mendoza F, Beaudry RM (2013) Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue. Postharvest Biol Technol 85:30–38

    Article  Google Scholar 

  • Cho B-K, Kim MS, Baek I-S, Kim D-Y, Lee W-H, Kim J, Bae H, Kim Y-S (2013) Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol Technol 76(0):40–49

    Article  Google Scholar 

  • Chuang C-L, Ouyang C-S, Lin T-T, Yang M-M, Yang E-C, Huang T-W, Kuei C-F, Luke A, Jiang J-A (2011) Automatic X-ray quarantine scanner and pest infestation detector for agricultural products. Comput Electron Agric 77:41–59

    Article  Google Scholar 

  • Ciampa A, Dell’Abate MT, Masetti O, Valentini M, Sequi P (2010) Seasonal chemical–physical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem 122:1253–1260

    Article  CAS  Google Scholar 

  • Cubero S, Aleixos N, Moltó E, Gómez-Sanchís J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproces Technol 4:487–504

    Article  Google Scholar 

  • Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna JAF (2013) Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl Spectrosc Rev 48(2):142–159

    Article  CAS  Google Scholar 

  • Defraeye T, Lehmann V, Gross D, Holat C, Herremans E, Verboven P, Verlinden B, Nicolai B (2013) Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol Technol 75:96–105

    Article  Google Scholar 

  • Diezma B, Lleó L, Roger JM, Herrero-Langreo A, Lunadei L, Ruiz-Altisent M (2013) Examination of the quality of spinach leaves using hyperspectral imaging. Postharvest Biol Technol 85:8–17

    Article  Google Scholar 

  • Donis-González IR, Guyer DE, Pease A, Barthel F (2014) Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging. Biosystems Eng 117:104–113

    Article  Google Scholar 

  • Drexler W, Morgner U, Kärtner F-X, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24(17):1221–1223

    Article  CAS  Google Scholar 

  • Dunn MT (2007) Applications of vision sensing in agriculture. Ph.D. dissertation. University of Southern Queensland

    Google Scholar 

  • El Masry G, Cubero S, Moltó E, Blasco J (2012) In-line sorting of irregular potatoes by using automated computer-based machine vision system. J Food Eng 112:60–68

    Article  Google Scholar 

  • Espinoza M (2003) Researcher seeks to solve tomato shape riddle, develop new varieties. Ohio State University Extension. http://www.ag.ohio-state.edu/~news/story.php?id=2673. Accessed 28 Oct 2010

  • Esquerre C, Gowen AA, Downey G, O'Donnell CP (2012) Wavelength selection for development of a near infrared imaging system for early detection of bruise damage in mushrooms (Agaricus bisporus). J Near Infrared Spectrosc 20(5):537–546

    Article  CAS  Google Scholar 

  • Fanourakis NE, Tzifaki EE (1993) Correlated inheritance of fruit neck with fruit length and linkage relations with 10 other characteristics of cucumber. Euphytica 65:71–77

    Article  Google Scholar 

  • Fathi M, Mohebbi M, Razavi SMA (2011) Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food Bioprocess Technol 4:1357–1366

    Article  Google Scholar 

  • Ford HD, Tatam RP, Landahl S, Terry LA (2011) Investigation of disease in stored onions using optical coherence tomography. Proc IV Int Conf Postharvest Unltd 2011:247–254

    Google Scholar 

  • Fujimoto J-G, Pitris C, Boppart S-A, Brezinski M (2010) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25

    Article  Google Scholar 

  • Goñi SM, Purlis E, Salvadori VO (2007) Three-dimensional reconstruction of irregular foodstuffs. J Food Eng 82:536–547

    Article  Google Scholar 

  • Gowen AA, O’Donnell CP, Taghizadeh M, Gaston E, O’Gorman A, Cullen PJ, Frias JM, Esquerre C, Downey G (2008a) Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus bisporus) during storage. Sens Instrum Food Qual Saf 2(3):133–143

    Article  Google Scholar 

  • Gowen AA, O’Donnell CP, Taghizadeh M, Cullen PJ, Frias JM, Downey G (2008b) Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). J Chemometr 22(3–4):259–267

    Article  CAS  Google Scholar 

  • Gui J, Zhou W (2010) Fruit shape classification using Zernike moments. Proc SPIE 7820:782015

    Article  Google Scholar 

  • Guo H, Tan Y, Li W (2014) Chapter 12: surface texture detection of double-feature apple based on computer vision. Proceedings of 3rd international conference on multimedia technology (ICMT 2013). Springer, Berlin, pp. 117–127

    Google Scholar 

  • Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle M (2004) Detection of freeze injury in oranges by magnetic resonance imaging of moving samples. Appl Magn Reson 26:431–445

    Article  Google Scholar 

  • Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle M (2005) Detection of seeds in citrus using magnetic resonance imaging under motion conditions and improvement with motion correction. Concepts in magnetic resonance. Part B Magn Reson Eng 26B:81–92

    Article  Google Scholar 

  • Hernández-Sánchez N, Barreiro P, Ruiz-Cabello J (2006) On-line identification of seeds in Mandarins with magnetic resonance imaging. Biosyst Eng 95:529–536

    Article  Google Scholar 

  • Hernández-Sánchez N, Hills BP, Barreiro P, Marigheto N (2007) An NMR study on internal browning in pears. Postharvest Biol Technol 44:260–270

    Article  CAS  Google Scholar 

  • Hernández-Sánchez N, Barreiro P, Ruiz-Cabello J (2009) NMR for internal quality evaluation in horticultural products. In: Optical monitoring of fresh and processed agricultural crops. CRC Press, pp. 423–468. ISBN: 978-1-4200-5402-6

    Google Scholar 

  • Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden BE, Wevers M, Hertog MLATM, Nicolaï BM (2013a) Characterisation of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biol Technol 75:114–124

    Article  Google Scholar 

  • Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT, Hertog MLATM, Verlinden BE, Bongaers E, Wevers M, Nicolaï BM (2013b) X-ray CT for quantitative food microstructure engineering: the apple case. Nucl Instrum Methods Phys Res Sect B 324:88–94. http://dx.doi.org/10.1016/j.nimb.2013.07.035

    Article  CAS  Google Scholar 

  • Herremans E, Melado-Herreros A, Defraeye T, Verlinden B, Hertog M, Verboven P, Val J, Encarnación Fernández-Valle M, Bongaers E, Estrade P, Wevers M, Barreiro P, Nicolaï BM (2014) Comparison of X-ray CT and MRI of watercore disorder of differentapple cultivars. Postharvest Biol Technol 87:42–50

    Article  Google Scholar 

  • Hoffmann T, Wormans G, Fürll C, Poller J (2005) A system for determining starch in potatoes online. IAg Eng LUA LU of Ag 37(2):34–43. http://vddb.library.lt/fedora/get/LT-eLABa-0001:J.04~2005~ISSN_1392-1134.V_37.N_2.PG_34-43/DS.002.1.01.ARTIC. Accessed 21 July 2014

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  • Huang H, Yu H, Xu H, Ying Y (2008) Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J Food Eng 87(3):303–313

    Article  CAS  Google Scholar 

  • Jafari A, Zarazadeh MR, Fazayeli A (2012) Orange grading based on visual texture features. CIGR-AGENG 2012, Valencia

    Google Scholar 

  • Jarimopas B, Jaisin N (2008) An experimental machine vision system for sorting sweet tamarind. J Food Eng 89(3):291–297

    Article  Google Scholar 

  • Jiang J-A, Chang H-Y, Ke-Han Wu, Ouyang C-S, Yang M-M, Yang E-C, Chen T-W, Lin T-T (2008) An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput Electron Agric 60:190–200

    Article  Google Scholar 

  • Jiang L, Zhu B, Cheng X, Luo Y, tao Y (2009) 3D surface reconstruction and aanlysis in automated apple stem-end/calyx identification. Trans ASABE 52(5):1775–1784

    Article  Google Scholar 

  • Kang SP, East AR, Trujillo FJ (2008) Colour vision system evaluation of bicolour fruit: a case study with ‘B74’ mango. Postharvest Biol Technol 49:77–85

    Article  Google Scholar 

  • Kang S, Lee K, Son J, Kim MS (2011) Detection of fecal contamination on leafy greens by hyperspectral imaging. Procedia Food Sci 1(0):953–959

    Article  Google Scholar 

  • Khoshroo A, Keyhani A, Zoroofi RA, Rafiee S, Zamani Z, Alsharif MR (2009) Classification of pomegranate fruit using texture analysis of MR images. Agric Eng Int. XI:Manuscript 1182. (March 2009)

    Google Scholar 

  • Khoshroo A, Keyhani A, Zoroofi RA, Yaghoobi G (2011) Nondestructive inspection of pomegranate maturity using magnetic resonance imaging and neural networks. CIGR Section VI international symposium on towards a sustainable food chain, food process, bioprocessing and food quality management. Nantes, France. April 18–20, 2011

    Google Scholar 

  • Kim MS, Chen Y-R, Cho B-K, Chao K, Yang C-C, Lefcourt AM, Chan D (2007) Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples. Sens Instrum Food Qual Saf 1:151–159

    Article  Google Scholar 

  • Kotwaliwale N, Curtis E, Othman S, Naganathan GK, Subbiah J (2012) Magnetic resonance imaging and relaxometry to visualize internal freeze damage to pickling cucumber. Postharvest Biol Technol 68:22–31

    Article  Google Scholar 

  • Landahl S, Terry LA, Ford HD (2012) Investigation of diseased onion bulbs using data processing of optical coherence tomography images. Acta Hortic 969:261–270

    Article  Google Scholar 

  • Lara MA, Lleó L, Diezma-Iglesias B, Roger JM, Ruiz-Altisent M (2013) Monitoring spinach shelf-life with hyperspectral image through packaging films. J Food Eng 119(2):353–361

    Article  CAS  Google Scholar 

  • Lee D-J, Schoenberger R, Archibald J, McCollum S (2008) Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging. J Food Eng 86:388–398

    Article  Google Scholar 

  • Leiva-Valenzuela GA, Lu R, Aguilera JM (2013) Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J Food Eng 115(1):91–98

    Article  Google Scholar 

  • Leónard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85:154–162

    Article  Google Scholar 

  • Li J, Rao X, Ying Y (2011) Detection of common defects on oranges using hyperspectral reflectance imaging. Comput Electron Agric 78(1):38–48

    Article  Google Scholar 

  • Lleó L, Roger JM, Herrero-Langreo A, Diezma-Iglesias B, Barreiro P (2011) Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. J Food Eng 104(4):612–620

    Article  Google Scholar 

  • Loeb G, Barton JK (2003) Imaging botanical subjects with optical coherence tomography: a feasibility study. Trans ASAE 46:1751–1757

    Article  Google Scholar 

  • Løkke MM, Seefeldt HF, Skov T, Edelenbos M (2013) Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biol Technol 75:86–95

    Article  Google Scholar 

  • López Camelo AF (2004) Manual for the preparation and sale of fruits and vegetables. ISSN 1010–1365 FAO agricultural services bulletin 151 FAO 2004 ISBN 92-5-104991-2. http://www.fao.org/docrep/008/y4893e/y4893e00.htm#Contents

  • Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, García-Navarrete OL, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol 5(4):1121–1142

    Article  Google Scholar 

  • Lü Q, Tang MJ, Cai JR, Zhao JW, Vittayapadung S (2011) Vis/NIR hyperspectral imaging for detection of hidden bruises on kiwifruits. Czech J Food Sci 29(6):595–602

    Google Scholar 

  • Maguwaza LS, Ford HD, Cronje PJR, Opara UL, Landahl S, Tatam RP, Terry LA (2013) Application of optical coherence tomography to non-destructively characterize rind breakdown disorder of ‘Nules Clementine’ mandarins. Postharvest Biol Technol 84:16–21

    Article  Google Scholar 

  • Martynenko AI (2011) Porosity evaluation of ginseng roots from real-time imaging and mass measurements. Food Bioprocess Technol 4:417–428

    Article  Google Scholar 

  • Matiacevich S, Celis Cofré D, Silva P, Enrione J, Osorio F (2013) Quality parameters of six cultivars of blueberry using computer vision. Intl J Food Sci 2013:8

    Article  Google Scholar 

  • Meglinski IV, Buranachai C, Terry LA (2010) Plant photonics: application of optical coherence tomography to monitor defects and rots in onion. Laser Phys Lett 7:307–310

    Article  Google Scholar 

  • Melado-Herreros A, Muñoz-García M, Blanco A, Val J, Fernandez-Valle M, Barreiro P (2013) Assessment of watercore development in apples with MRI: effect of fruit location in the canopy. Postharvest Biol Technol 86:125–133

    Article  Google Scholar 

  • Mendoza F, Dejmek P, Aguilera JM (2007) Color and image texture analysis in classification of commercial potato chips. Food Res Intl 40:1146–54

    Article  Google Scholar 

  • Mendoza F, Lu R, Ariana D, Cen H, Bailey B (2011) Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol Technol 62(2):149–160

    Google Scholar 

  • Menesatti P, Costa C, Paglia G, Pallotino F, D’Andrea S, Rimatori V, Aguzzi J (2008) Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Eng 101:417–424

    Article  Google Scholar 

  • Milczarek R, Saltveit ME, Casey Garvey T, McCarthy MJ (2009) Assessment of tomato pericarp mechanical damage using multivariate analysis of magnetic resonance images. Postharvest Biol Technol 52:189–195

    Article  Google Scholar 

  • Mizushima A, Lu R (2013) An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput Electron Agr 94:29–37

    Article  Google Scholar 

  • Moreda GP, Muñoz MA, Ruiz-Altisent M, Perdigones A (2012) Horticultural produce shape determination using computer vision—a review. J Food Eng 108:245–261

    Article  Google Scholar 

  • Musse M, Quellec Sp, Cambert M, Devaux M-FO, Lahaye M, Mariette F (2009a) Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry. Postharvest Biol Technol 53:22–35

    Article  CAS  Google Scholar 

  • Musse M, Quellec Sp, Devaux M-FO, Cambert M, Lahaye M, Mariette FO (2009b) An investigation of the structural aspects of the tomato fruit by means of quantitative nuclear magnetic resonance imaging. Magn Reson Imaging 27:709–719

    Article  Google Scholar 

  • Musse M, De Guio FO, Quellec SP, Cambert M, Challois S, Davenel A (2010) Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magn Reson Imaging 28:1525–1534

    Article  Google Scholar 

  • Nandi CS, Tudu B, Koley C (2012). An automated machine vision based system for fruit sorting and grading. 6th International Conference on Sensing Technology, pp 195–200

    Google Scholar 

  • Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46(2):99–118

    Article  Google Scholar 

  • Nielsen MS, Christensen LB, Feidenhans’l R (2014) Frozen and defrosted fruit revealed with X-ray dark-field radiography. Food Control 39:222–226

    Article  Google Scholar 

  • NIVAP Holland (Netherlands Potato Consultative Foundation) (2014) Tuber characteristics determining quality. http://www.nivaa.nl/uk/about_potatoes/agronomy/on_the_road_to_potato_processing/tuber_characteristics. Accessed 21 July 2014

  • Okayama T, Qiao J, Tanaka H, Kondo N, Shibusawa S (2006) Classification of shape of bell pepper by machine vision system. Agr Inf Res 15(2):113–122

    Google Scholar 

  • Opara UL, Pathare PB (2014) Bruise damage measurement and analysis of fresh horticultural produce—a review. Postharvest Biol Technol 91:9–24

    Article  Google Scholar 

  • Peng Y, Zhao J, Dhakal S, Zhou T (2012) Real-time detection of natural bruises in apple surface using machine vision. ASABE, Dallas

    Google Scholar 

  • Piñeiro M, Díaz Ríos LB (2004) Manual para multiplicadores. Servicio de Calidad de los Alimentos y Normas Alimentarias (ESNS) Dirección de Alimentación y Nutrición. FAO. http://www.fao.org/docrep/007/y5488s/y5488s00.htm#Contents

  • Quevedo R, Mendoza F, Aguilera JM, Chanona J, Gutiérrez-López G (2008) Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. J Food Eng 84:509–515

    Article  Google Scholar 

  • Rajkumar P, Wang N, Eimasry G, Raghavan GSV, Gariepy Y (2012) Studies on banana fruit quality and maturity stages using hyperspectral imaging. J Food Eng 108(1):194–200

    Article  Google Scholar 

  • Riyadi S, Ishak AJ, Mustafa MM, Hussain A (2008) Wavelet-based feature extraction technique for fruit shape classification. In: Proceedings of 5th International Symposium on Mechatronics and its Applications (ISMA 08). IEEE

    Google Scholar 

  • Rizzolo A, Vanoli M, Cortellino G, Spinelli L, Contini D, Herremans E, Bongaers E, Nemeth A, Leitner M, Verboven P, Nicolaï B, Torricelli A (2013) Characterizing the tissue of apple air-dried and osmo air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS. Innov Food Sci Emerg Technol 24:121–130

    Article  Google Scholar 

  • Ruiz-Altisent M, Ruiz L, Moreda GP, Lu R, Hernández-Sánchez N et al (2010) Sensors for specialty crops. Comput Electron Agr 74:176–194

    Article  Google Scholar 

  • Siripatrawan U, Makino Y, Kawagoe Y, Oshita S (2011) Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85(1):276–281

    Article  CAS  Google Scholar 

  • Slaughter DC, Obenland DM, Thompson JF, Arpaia ML, Margosan DA (2008) Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biol Technol 48:341–346

    Article  Google Scholar 

  • Sugiyama J, Tsuta M (2010) Chapter 11—visualization of sugar distribution of melons by hyperspectral technique. In: Sun D-W (ed) Hyperspectral imaging for food quality analysis and control. Academic, San Diego, pp 349–368

    Chapter  Google Scholar 

  • Sun D-W (2008) Computer vision technology for food quality evaluation. Academic, San Diego

    Google Scholar 

  • Syvertsen JP, Albrigo LG, Dunlop JM, Ritenour MA, Vachon RC (2005) Growth conditions, crop load and fruit size affect sheepnosing in grapefruit. Proc Fla State Hort Soc 118:28–34

    Google Scholar 

  • Taghizadeh M, Gowen A, Ward P, O’Donnell CP (2010) Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innov Food Sci Emerg Technol 11(3):423–431

    Article  CAS  Google Scholar 

  • Taglienti A, Massantini R, Botondi R, Mencarelli F, Valentini M (2009) Postharvest structural changes of Hayward kiwifruit by means of magnetic resonance imaging spectroscopy. Food Chem 114:1583–1589

    Article  CAS  Google Scholar 

  • Taglienti A, Vanoli M, Cortellino G, Spinelli L, Contini D, Herremans E, Bongaers E, Nemeth A, Leitner M, Verboven P, Nicolaï BM, Torricelli A (2013) Characterizing the tissue of apple air-dried and osmo-air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS. Innov Food Sci Emerg Technol. In Press

    Google Scholar 

  • Teena M, Manickavasagan A, Mothershaw A, Hadi SE, Jayas DS (2013) Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review. Food Bioprocess Technol 6:1621–1634

    Article  Google Scholar 

  • Thybo AK, Andersen HJ, Karlsson AH, Donstrup S, Stodkilde-Jorgensen H (2003) Low-field NMR relaxation and NMR-imaging as tools in differentiation between potato sample and determination of dry matter content in potatoes. J Food Sci 36(3):315–322

    CAS  Google Scholar 

  • Thybo AK, Szczypinski PM, Karlsson AH, Donstrup S, Stodkilde-Jorgensen HS, Andersen HJ (2004a) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. J Food Eng 61:91–100

    Article  Google Scholar 

  • Thybo AK, Jespersenb SN, Lærkec PE, Stødkilde HJ (2004b) Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magn Reson Imaging 22:1311–1317

    Article  Google Scholar 

  • Verboven P, Nemeth A, Abera MK, Bongaers E, Daelemans D, Estrade P, Herremans E, Hertog M, Saeys W, Vanstreels E, Verlinden B, Leitner M, Nicolaï B (2013) Optical coherence tomography visualizes microstructure of apple peel. Postharvest Biol Technol 78:123–132

    Article  Google Scholar 

  • Wang H, Feng H, Luo Y, Zhang A (2007) Produce surface characteristics affect product quality and safety. ISHS Acta Hort 746:131–138 (Proc IC on Qual Manag Fresh cut produce. Eds.: S Kanlayanarat et al.)

    Google Scholar 

  • Wu D, Sun D-W (2013a) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innovative Food Sci Emerg Technol 19:1–14

    Article  CAS  Google Scholar 

  • Wu D, Sun D-W (2013b) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part II: applications. Innovative Food Sci Emerg Technol 19:15–28

    Article  CAS  Google Scholar 

  • Zhang L, McCarthy MJ (2012) Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol 67:96–101

    Article  CAS  Google Scholar 

  • Zhang L, McCarthy MJ (2013) Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol Technol 77:59–66

    Article  Google Scholar 

  • Zhao J, Qin O, Chen Q, Wang JJ (2010) Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sens Lett 8(4):570–576

    Article  Google Scholar 

  • Zhelev N, Barudov S (2005) Laser light scattering applications in biotechnology. Biotechnol Biotechnological Equip 19:3–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Hernández-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernández-Sánchez, N., Moreda, G., Herre-ro-Langreo, A., Melado-Herreros, Á. (2016). Assessment of Internal and External Quality of Fruits and Vegetables. In: Sozer, N. (eds) Imaging Technologies and Data Processing for Food Engineers. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24735-9_9

Download citation

Publish with us

Policies and ethics