Abstract
This chapter addresses the forth paradigm of materials research – big data-driven materials science. Its concepts and state of the art are described, and its challenges and chances are discussed. For furthering the field, open data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR – Findable, Accessible, Interoperable, and Repurposable/Reusable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.
Similar content being viewed by others
References
AFLOW, Automatic FLOW for materials discovery, http://aflowlib.org/; see also Toher et al. (2018) in this handbook of materials modeling, and Curtarolo et al. (2012), Calderon et al. (2015)
Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4:053208
Alder BJ, Wainwright TE (1958) Molecular dynamics by electronic computers. In: Prigogine I (ed) International symposium on transport processes in statistical mechanics. Wiley, New York, pp 97–131
Alder BJ, Wainwright TE (1962) Phase transition in elastic disks. Phys Rev 127:359–361
Alder BJ, Wainwright TE (1970) Decay of velocity autocorrelation function. Phys Rev A 1:18–21
Atzmueller M (2015) Subgroup discovery. WIREs Data Min Knowl Discov 5:35
Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403
Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 87:184115
Blaha P, Schwarz K, Sorantin P, Trickey SB (1990) Full-potential, linearized augmented plane wave programs for crystalline systems. Comp Phys Commun 59:399
Blank TB, Brown SD, Calhoun AW, Doren DJ (1995) Neural network models of potential energy surfaces. J Chem Phys 103:4129
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180:2175–2196
Boley M (2017) Private communications. In the figure, the Gaussian radial basis function (rbf) kernel was used plus a 0.1 noise component: k(a,b)=rbf(a,b | scale=0.2) + 0.1 delta(a,b)
Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Nardelli MB, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108:233
Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Proc Mag 25:21
Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489
Candro EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489
Carbogno C, Thygesen KS, Bieniek B, Drax C, Ghiringhelli LM, Gulans A, Hofmann OT, Jacobsen KW, Lubeck S, Mortensen JJ, Strange M, Wruss E, Scheffler M (2019) Numerical quality control for DFT-based materials databases. to be published
Ceriotti M, Willatt MJ, Csányi G (2018) Machine learning of atomic-scale properties based on physical principles. In: This handbook of materials modeling
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321
Cohen ML (2018) Modeling solids and its impact on science and technology. In: This handbook of materials modeling
Curtarolo S, Setyawan W, Hart GLW, Jahnatek M, Chepulskii RV, Taylor RH, Wanga S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218
Donoho DL (2006) Compressed sensing. IEEETrans InformTheory 52:1289
Draxl C, Scheffler M (2018) NOMAD: the FAIR concept for big-data-driven materials science. MRS Bull 43:676
Draxl C, Scheffler M (2019) The NOMAD laboratory: from data sharing to artificial intelligence. J Phys Mater 2:036001
Draxl C, Illas F, Scheffler M (2017) Open data settled in materials theory. Nature 548:523
Duivesteijn W, Feelders AJ, Knobbe A (2016) Exceptional model mining: supervised descriptive local pattern mining with complex target concepts. Data Min Knowl Discov 30:47
Enkovaara J, Rostgaard MJJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22:253202
Faber F, Lindmaa A, von Lilienfeld OA, Armiento R (2015) Crystal structure representations for machine learning models of formation energies. Int J Quantum Chem 115:1094
Friedman JH, Fisher NI (1999) Bump hunting in high-dimensional data. Stat Comput Stat Comput 9:123
Garrity KF, Bennett JW, Rabe KM, Vanderbilt D (2014) Pseudopotentials for high-throughput DFT calculations. Comput Mater Sci 81:446–452
Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of material science: critical role of the descriptor. Phys Rev Lett 114:105503
Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüder M, Oliveira M, Scheffler M (2016) Towards a common format for computational materials science data. Psi-k Scientific Highlight of the Month No. 131. http://psi-k.net/download/highlights/Highlight_131.pdf
Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Hus G, Lüder M, Oliveira M, Scheffler M (2017a) Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. npj Comput Mater 3:46
Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyang R, Levchenko SV, Draxl C, Scheffler M (2017b) Learning physical descriptors for material science by compressed sensing. New J Phys 19:023017
Gibson WF (1999) “The Science in Science Fiction” on talk of the nation (30 Nov 1999, Timecode 11:55). Available via NPR. https://www.npr.org/2018/10/22/1067220/the-science-in-science-fiction or https://www.npr.org/programs/talk-of-the-nation/1999/11/30/12966633/
Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM (2017) Uncovering structure-property relationships of materials by subgroup discovery. New J Phys 19:013031
Gray J (2007) The concept of a fourth paradigm was probably first discussed by J. Gray at a workshop on January 11, 2007 before he went missing at the Pacific on January 28, 2007. See: Hey T, Tansley S, Tolle K (eds) (2009) The fourth paradigm, data intensive discovery. Microsoft Research, Redmond, Washington 2009, ISBN 978–0–9825442-0-4
Gulans A, Kontur S, Meisenbichler C, Nabok D, Pavone P, Rigamonti S, Sagmeister S, Werner U, Draxl C (2014) Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J Phys Condens Matter 26:363202
Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, Scheffler M, von Lilienfeld OA, Tkatchenko A, Müller K-K (2013) Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theory Comput 9:3404
Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Müller K-R, Tkatchenko A (2015) Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett 6:2326
Hedin L (1965) New method for calculating the one-particle Green's function with application to the Electron-gas problem. Phys Rev 139:A796
Hellström M, Behler J (2018) Neural network potentials in materials modeling. In: This handbook of materials modeling
Herrera F, Carmona CJ, González P, del Jesus MJ (2011) An overview on subgroup discovery: foundations and applications. Knowl Inf Syst 29:495
Hinton GE (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507
Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527
Hirn M, Poilvert N, Mallat S (2015) Quantum energy regression using scattering transforms. https://arxiv.org/abs/1502.02077
Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136:B864
Huang B, Symonds NO, von Lilienfeld OA (2018) Quantum machine learning in chemistry and materials. In: Handbook of materials modeling
Huo H, Rupp M (2017) Unified representation for machine learning of molecules and crystals. https://arxiv.org
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002
Jain A, Ong SP, Chen W, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese GM, Hautier G, Gunter D, Persson KA (2015) FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr Comput: Pract Exper 27:5037–5059
Jain A, Montoya J, Dwaraknath S, Zimmermann NER, Dagdelen J, Horton M, Huck P, Winston D, Cholia S, Ong SP, Persson K (2018) The materials project: accelerating materials design through theory-driven data and tools. In: This handbook of materials modeling
Kaggle/Nomad2018 (2018) Predicting transparent conductors – predict the key properties of novel transparent semiconductors https://www.kaggle.com/c/nomad2018-predict-transparent-conductors
Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advanced techniques in knowledge discovery and data mining. American Association for Artificial Intelligence, Menlo Park, pp 249
Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138
Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169
Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment—a Python library for working with atoms. J Phys Condens Mat 29:273002
Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: traps in big data analysis. Science 343:1203
Lejaeghere K, Bihlmayer G, Björkamn T, Blaha P, Blügel S, Blum V, Caliste D, Castelli IE, Clark SJ, Corso AD, de Gironcoli S, Deutsch T, Dewhurst JK, Di Marco I, Draxl C, Dulak M, Eriksson O, Flores-Livas JA, Garrity KF, Genovese L, Giannozzi P, Giantomassi M, Goedecker S, Gonze X, Grånäs O, Gross EKU, Gulans A, Gygi F, Hamann DR, Hasnip PJ, Holzwarth NAW, Iuşan D, Jochym DB, Jollet F, Jones D, Kresse G, Koepernik K, Küçükbenli E, Kvashnin YO, Locht ILM, Lubeck S, Marsman M, Marzari N, Nitzsche U, Nordström L, Ozaki T, Paulatto L, Pickard CJ, Poelmans W, Probert MIJ, Refson K, Richter M, Rignanese G-M, Saha S, Scheffler M, Schlipf M, Schwarz K, Sharma S, Tavazza F, Thunström P, Tkatchenko A, Torrent M, Vanderbildt D, van Setten MJ, Speyvroeck VV, Wills JM, Yates JR, Zhang G-X, Cottenier S (2016) Reproducibility in density functional theory calculations of solids. Science 351:aad3000
Li L, Burke K (2018) Recent developments in density functional approximations. In: This handbook of materials modeling
Lorenz S, Groß A, Scheffler M (2004) Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett 395:210
Lorenz S, Scheffler M, Groß A (2006) Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface. Phys Rev B 73:115431
Materials Project. https://materialsproject.org. See also Jain et al. (2013) and the chapter by Jain et al. (2018) in this handbook of materials modeling
Mazheika A, Wang Y, Ghiringhelli LM, Illas F, Levchenko SV, Scheffler M (2019) Ab initio data analytics study of carbon-dioxide activation on semiconductor oxide surfaces. to be published.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087
Moruzzi VL, Janak JF, Williains AR (1978) Calculated electronic properties of metals. Pergamon, New York
Nature editorial (2017) Not-so-open data. Nature 546:327. Empty rhetoric over data sharing slows science https://www.nature.com/news/empty-rhetoric-over-data-sharing-slows-science-1.22133
Nelson IJ, Hart GLW, Zhou F, Ozolins V (2013) Compressive sensing as a paradigm for building physics models. Phys Rev B 87:035125
NOMAD (2014) The concept of the NOMAD Repository and Archive (NOMAD) was developed in 2014 (see e.g. the discussion in Ghiringhelli et al. 2016), independently and parallel to the “FAIR Guiding Principles” (Wilkinson et al. 2016). Interestingly, the essence is practically identical.However, the accessibility of data in NOMAD goes further than meant in the FAIR Guiding Principles, as for searching and even downloading data from NOMAD, users don’t even need to register
NOMAD, The NOMAD (Novel Materials Discovery) Center of Excellence (CoE) was launched in November 2015. https://nomad-coe.eu, https://youtu.be/yawM2ThVlGw
OQMD, Open quantum materials database. http://oqmd.org/, see also Saal et al. (2013)
Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mat 2:083802
Pearl J (2009) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press, New York. 14 Sept 2009
Pizzi J, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230
Pyykkö P (2012) The physics behind chemistry and the periodic table. Chem Rev 112:371–384
Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136:A405–A411
Reuter K, Stampfl C, Scheffler M (2005) Ab Initio atomistic thermodynamics and statistical mechanics of surface properties and functions. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 149–194
Rupp M, Tkatchenko A, Müller K-R, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:058301
Saal J, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501
Scerri ER (2008) The periodic table: its story and its significance. Oxford University Press, Inc, New York. ISBN 978-0-19-530573-9
Schütt KT, Glawe H, Brockherde F, Sanna A, Müller K-R, Gross EKU (2014) How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys Rev B 89:205118
Seko A, Hayashi H, Nakayama K, Takahashi A, Tanaka I (2017) Representation of compounds for machine-learning prediction of physical properties. Phys Rev B 95:144110
Siebes A (1995) Data surveying foundations of an inductive query language. KDD-95 proceedings. AAAI Press, Montreal, p 269
Singh AK, Montoya JH, Gregoire JM, Persson KA (2019) Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat Commun 10:443
Slater JC (1937) Wave functions in a periodic potential. Phys Rev 51:846
Slater JC (1953) An augmented plane wave method for the periodic potential problem. Phys Rev 92:603
Slater JC (1965) Quantum theory of molecules and solids, Symmetry and energy bands in crystals, vol 2. McGraw-Hill, New York
Slater JC (1967) Quantum theory of molecules and solids, Insulators, semiconductors and metals, vol 3. McGraw-Hill, New York
Slater JC, Johnson KH (1972) Self-consistent-field Xα cluster method for polyatomic molecules and solids. Phys Rev B 5:844
Sutton C, Ghiringhelli LM, Yamamoto T, Lysogorskiy Y, Blumenthal L, Hammerschmidt T, Golebiowski J, Liu X, Ziletti A, Scheffler M (2019) NOMAD 2018 Kaggle competition: solving materials science challenges through crowd sourcing. https://arxiv.org/abs/1812.00085 , npj Computational Materials in print (2019)
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267
Toher C, Oses C, Hicks D, Gossett E, Rose F, Nath P, Usanmaz P, Ford DC, Perim E, Calderon CE, Plata JJ, Lederer Y, Jahnátek M, Setyawan W, Wang S, Xue J, Rasch K, Chepulskii RV, Taylor RH, Gomez G, Shi H, Supka AR, Rabih Al Rahal Al Orabi, Gopal P, Cerasoli FT, Liyanage L, Wang H, Siloi I, Agapito LA, Nyshadham C, Hart GLW, Carrete J, Legrain FL, Mingo N, Zurek E, Isayev O, Tropsha A, Sanvito S, Hanson RM, Takeuchi I, Mehl MJ, Kolmogorov AN, Yang K, D’Amico P, Calzolari A, Costa M, De Gennaro R, Nardelli MB (2018) The AFLOW fleet for materials discovery. In: This handbook of materials modeling
van Setten MJ, Caruso F, Sharifzadeh S, Ren X, Scheffler M, Liu F, Lischner J, Lin L, Deslippe JR, Louie SG, Yang C, Weigend F, Neaton JB, Evers F, Rinke P (2015) GW100: benchmarking G0W0 for molecular systems. J Chem Theory Comput 11:5665
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ‘t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Monsal B (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018
Wimmer E, Krakauer H, Weinert M, Freeman AJ (1981) Phys Rev B 24:864
Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Komorowski J, Zytkow J (eds) Principles of data mining and knowledge discovery: first European symposium, PKDD’97, Trondheim, Norway, 24–27 June 1997. Springer, Berlin, p 78
Xie T, Grossman JC (2018) Phys Rev Lett 120:145301
Yin MT, Cohen ML (1982) Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge. Phys Rev B 26:5668
Zhang Y, Ling C (2018) A strategy to apply machine learning to small datasets in materials science. npj Comput Materials 4:25
Zhang IY, Logsdail AJ, Ren X, Levchenko SV, Ghiringhelli L, Scheffler M (2019) Test set for materials science and engineering with user-friendly graphic tools for error analysis: systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New J Phys 1:013025
Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nat Commun 9:2775
Acknowledgments
We gratefully acknowledge helpful discussions with Luca Ghiringhelli, Mario Boley, and Sergey Levchenko and their critically reading of the manuscript. This work received funding from the European Union’s Horizon 2020 Research and Innovation Programme, Grant Agreement No. 676580, the NOMAD Laboratory CoE and No. 740233, ERC: TEC1P. We thank P. Wittenburg for clarification of the FAIR concept. The work profited from programs and discussions at the Institute for Pure and Applied Mathematics (IPAM) at UCLA, supported by the NFS, and from BIGmax, the Max Planck Society’s Research Network on Big-Data-Driven Materials Science.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this entry
Cite this entry
Draxl, C., Scheffler, M. (2019). Big Data-Driven Materials Science and Its FAIR Data Infrastructure. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_104-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-42913-7_104-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42913-7
Online ISBN: 978-3-319-42913-7
eBook Packages: Living Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics