Abstract
This work presents a high energy multipole distribution spark ignition system that utilizes a three-pole spark igniter to create spatially distributed sparks within the igniter perimeter. The current prototype can fit in a M14 standard spark plug mounting thread, evenly distributing three spark gaps in a triangular pattern with a circumradius of 2.3 mm. The spark gaps can be individually energized by the attached ignition coils, thereby discharging in either simultaneous or alternating mode. The experimental results from both the single-cylinder engine and constant-volume combustion vessels indicate a clear trend that, on the basis of similar total spark energy levels, the three-pole ignition system can shorten the ignition delay, stabilize the combustion phasing, and extend the ignitable lean limits, compared to a conventional fine-electrode spark plug. Moreover, as found in the combustion vessel tests, the effectiveness of spark discharge enhancement using direct-capacitor discharge can be augmented through simultaneously discharging through the three poles, hence resulting in significantly shortened ignition delay.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wei, H., Zhu, T., Shu, G., Tan, L., et al.: Gasoline engine exhaust gas recirculation– a review. Appl. Energy 99, 534–544 (2012). doi:10.1016/j.apenergy.2012.05.011
Gallon, E., Fontana, G., Palmaccio, R.: Effects of exhaust gas recycle in a downsized gasoline engine. Appl. Energy 105, 99–107 (2013). doi:10.1016/j.apenergy.2012.12.046
Takahashi, D., Nakata, K., Yoshihara, Y., Ohta, Y., et al.: Combustion development to achieve engine thermal efficiency of 40 % for hybrid vehicles. SAE Technical Paper 2015-01-1254 (2015). doi:10.4271/2015-01-1254
Zheng, M., Tan, Y., Mulenga, M., Wang, M.: Thermal efficiency analyses of diesel low temperature combustion cycles. SAE Technical Paper 2007-01-4019 (2007). doi:10.4271/2007-01-4019
Gukelberger, R., Alger, T., Gingrich, J., Mangold, B.: Impact of operating parameters on ignition system energy consumption. SAE Technical Paper 2014-01-1233 (2014). doi:10.4271/2014-01-1233
Hampe, C., Kubach, H., Spicher, U., et al.: Investigations of ignition processes using high frequency ignition. SAE Tech Paper, 2013-01-1633 (2013). doi:10.4271/2013-01-1633
Shiraishi, T., Urushihara, T., Gundersen, M.: A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition. J. Phys. D Appl. Phys. 42, 135208 (2009). doi:10.1088/00223727/42/13/135208
Sjöberg, M., Zeng, W., Singleton, D., Sanders, J., et al.: Combined effects of multi-pulse transient plasma ignition and intake heating on lean limits of well-mixed E85 DISI engine operation. SAE Int. J. Engines 7(4), 1781–1801 (2014). doi:10.4271/2014-01-2615
Rohwein, G.J.: An efficient power-enhanced ignition system. IEEE Trans. Plasma Sci. 25(2), 306–310 (1997). doi:10.1109/27.602504
Yoshida, K., Shoji, H., Tanaka, H.: Performance of newly developed plasma jet igniter. SAE Technical Paper 1999-01-3327 (1999). doi:10.4271/1999-01-3327
Dale, J.D., Checkel, M.D., Smy, P.R.: Application of high energy ignition systems to engines. Prog. Energy Combust. Sci. 23(5–6), 379–398 (1997). doi:10.1016/S0360-1285(97)00011-7
Heise, V., Farah, P., Husted, H., Wolf, E.: High frequency ignition system for gasoline direct injection engines. SAE Technical Paper 2011-01-1223 (2011). doi:10.4271/2011-01-1223
Alger, T., Gingrich, J., Mangold, B., Roberts, C.: A continuous discharge ignition system for EGR limit extension in SI engines. SAE Int. J. Engines 4(1), 677–692 (2011). doi:10.4271/2011-01-0661
Heywood, J.B.: Internal combustion engine fundamentals, pp. 435–437 (1988)
Hall, M., Matthews, R., Ezekoye, O.: Railplug ignition operating characteristics and performance: a review. SAE Technical Paper 2007-01-1832 (2007). doi:10.4271/2007-01-1832
Rohwein, G., Camilli, L.: Automotive ignition transfer efficiency. SAE Technical Paper 2002-01-2839 (2002). doi:10.4271/2002-01-2839
Suess, M., Guenthner, M., Schenk, M., et al.: Investigation of the potential of corona ignition to control gasoline homogeneous charge compression ignition combustion. P. I. Mech. Eng. D-J. Aut. 226(2), 275–286 (2011). doi:10.1177/0954407011416905
Stevens, C.A., Pertl, F.A., Hoke, J.L., et al.: Comparative testing of a novel microwave ignition source, the quarter wave coaxial cavity igniter. J. Phys. D Appl. Phys. 225(12), 1633–1640 (2011). doi:10.1177/0954407011411389
Yu, S., Xie, K., Yu, X., Wang, M., Zheng, M., Han, X., Tjong, J.: High energy ignition strategy for diluted mixtures via a three-pole igniter. SAE Papers 2016-01-2175 (2016)
Yu, S., Wang, M., Zheng, M.: Distributed electrical discharge to improve the ignition of premixed quiescent and turbulent mixtures. SAE Technical Paper 2016-01-0706 (2016). doi:10.4271/2016-01-0706
Xie, K., Yu, S., Zheng, M.: Investigation of multi-pole spark ignition on flame kernel development and in engine operation. In: Proceedings of the ASME 2016 Internal Combustion Fall Technical Conference, 9–12 October 2016, Greenville, SC, USA, ICEF2016-9474 (2016)
Acknowledgements
The research at the Clean Combustion Engine Laboratory is sponsored by NSERC, AUTO21, BiofuelNet, Canada Foundation for Innovation, Ontario Research Funds, the University of Windsor, and Ford Motor Company.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this paper
Cite this paper
Zheng, M., Yu, S., Tjong, J. (2017). High Energy Multipole Distribution Spark Ignition System. In: Günther, M., Sens, M. (eds) Ignition Systems for Gasoline Engines. CISGE 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-45504-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-45504-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45503-7
Online ISBN: 978-3-319-45504-4
eBook Packages: EngineeringEngineering (R0)