Skip to main content

Blood and Blood Flow

  • Chapter
  • First Online:
Cardiovascular Biomechanics
  • 121k Accesses

Abstract

Blood is the fluid which flows in the cardiovascular system. It is, however, not a pure fluid but rather a suspension of a number of different particles (cells, cell fragments and macromolecules) in a fluid base. This chapter explores the fluid behaviour of blood including the impact of the particles on this behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarts PAMM, van den Broek SA, Prins GW, Kuiken GDC, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988;8:819–24.

    Article  CAS  PubMed  Google Scholar 

  • Asakura S, Oosawa F. Interactions between particles suspended in solutions of macromolecules. J Polym Sci. 1958;33:183–92.

    Article  CAS  Google Scholar 

  • Blausen B. Wikiversity J Med. 2014. doi:10.15347/wjm/2014.010. ISSN 20018762.

  • Cantat I, Misbah C. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett. 1999;83:880–3.

    Article  CAS  Google Scholar 

  • Caro CG, Cheshire NJ, Watkins N. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J R Soc Interface. 2005;2:261–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherukat P, McLaughlin JB. The inertial lift on a rigid sphere in a linear shear-flow field near a flat wall. J Fluid Mech. 1994;263:1–18.

    Article  CAS  Google Scholar 

  • Chien S. Shear dependence of effective cell volume as a determinant of blood viscosity. Science. 1970;168:977–9.

    Article  CAS  PubMed  Google Scholar 

  • Cloutier G, Weng XD, Roederer GO, Allard L, Tardif F, Beaulieu R. Differences in the erythrocyte aggregation level between veins and arteries of normolipidemic and hyperlipidemic individuals. Ultrasound Med Biol. 1997;23:1383–93.

    Article  CAS  PubMed  Google Scholar 

  • Cookson AN, Doorly DJ, Sherwin SJ. Mixing through stirring of steady flow in small amplitude helical tubes. Ann Biomed Eng. 2009;37:710–21.

    Article  CAS  PubMed  Google Scholar 

  • Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9:3038–46.

    Article  PubMed  Google Scholar 

  • Dupire J, Socol M, Viallat A. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA. 2012;109:20808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahraeus R. The suspension stability of the blood. Physiol Rev. 1929;9:241–74.

    Google Scholar 

  • Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol. 1931;96:562–8.

    CAS  Google Scholar 

  • Gijsen FJH, van de Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 1999;32:601–8.

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith HL. The flow of model particles and blood cells and its relation to thrombogenesis. Prog Hemost Thromb. 1972;1:97–127.

    CAS  PubMed  Google Scholar 

  • Gondret P. Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres. J Rheoel. 1997;41:1261–74.

    Article  CAS  Google Scholar 

  • Ho P, Leal LG. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech. 1974;65:365–400.

    Article  Google Scholar 

  • Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech. 2004;37:709–20.

    Article  PubMed  Google Scholar 

  • Jung J, Hassanein A. Three-phase CFD analytical modeling of blood flow. Med Eng Phys. 2008;30:91–103.

    Article  PubMed  Google Scholar 

  • Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys Rev E. 2008;77: article number: 021903.

    Google Scholar 

  • Krüger T. Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol Acta. 2015. Doi:10.1007/s00397-015-0891-6.

  • Kumar A, Graham MD. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter. 2012a;8:10536–48.

    Article  CAS  Google Scholar 

  • Kumar A, Graham MD. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys RevLett. 2012b;109:108102.

    Google Scholar 

  • Leal LG. Particle motions in a viscous fluid. Ann Rev Fluid Mech. 1980;12:435–76.

    Article  Google Scholar 

  • Leighton D, Acrivos A. The lift on a small sphere touching a plane in the presence of a simple shear-flow. Z Angew Math Phys. 1985;36:174–8.

    Article  Google Scholar 

  • Lyon MK, Leal LG. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J Fluid Mech. 1998;363:25–56.

    Article  CAS  Google Scholar 

  • Matas JP, Morris JF. Inertial migration of rigid spherical particles in Poiseuille flow. J Fluid Mech. 2004;515:171–95.

    Article  Google Scholar 

  • Nash GB, Watts T, Thornton C, Barigou M. Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets. Clin Hemorheol Microcirc. 2008;39:303–10.

    CAS  PubMed  Google Scholar 

  • Olla P. The lift on a tank-treading ellipsoidal cell in a shear flow. J Phys. 1997;7:1533–40.

    CAS  Google Scholar 

  • Pedley TJ. The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press; 1980.

    Book  Google Scholar 

  • Pries AR, Secomb TW. Blood flow in microvascular networks. In: Tuma RF, Duran WN, Ley K, editors. Handbook of physiology: microcirculation. 2008. p. 3–36.

    Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF. Blood flow in microvascular networks. Experiments and simulation. Circ Res. 1990;67:826–34.

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and haematocrit. Am J Physiol. 1992;263:H1770–8.

    CAS  PubMed  Google Scholar 

  • Segre G, Silberberg A. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J Fluid Mech. 1962;14:136–57.

    Article  Google Scholar 

  • Shuib AS, Hoskins PR, Easson WJ. Experimental investigation of particle distribution in a flow through a stenosed artery. J Mech Sci Technol. 2011;25:357–64.

    Article  Google Scholar 

  • Tran-Son-Tay R, Nash GB. Mechanical properties of leukocytes and their effects on the circulation. In: Baskurt OK et al., editors. Handbook of hemorheology and hemodynamics. IOS Press; 2007. p. 137–49.

    Google Scholar 

  • Vlahovska PM, Podgorski T, Misbah C. Vesicles and red blood cells in flow: from individual dynamics to rheology. C R Phys. 2009;10:775–89.

    Article  CAS  Google Scholar 

  • Wagner C, Steffen P, Svetina S. Aggregation of red blood cells: from rouleaux to clot formation. C R Phys. 2013;14:459–69.

    Article  CAS  Google Scholar 

  • Wang SH, Shung KK. In vivo measurements of ultrasonic backscattering in blood. IEEE Trans Ultrason Ferroelec Freq Control. 2001;48:425–31.

    Article  CAS  Google Scholar 

  • Wu SP, Ringgaard S, Oyre S, Hansen MS, Rasmus S, Pedersen EM. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. JMRI J Magn Res Im. 2004;19:188–93.

    Article  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000;78:1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Hoskins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoskins, P.R., Hardman, D. (2017). Blood and Blood Flow. In: Hoskins, P., Lawford, P., Doyle, B. (eds) Cardiovascular Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-46407-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46407-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46405-3

  • Online ISBN: 978-3-319-46407-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics