Skip to main content

Selection of Chemotherapy in Hyperthermic Intraperitoneal Chemotherapy

  • Chapter
  • First Online:
Unusual Cases in Peritoneal Surface Malignancies

Abstract

The peritoneum consists of a layer of mesothelial cells covering all abdominal organs and the abdominopelvic wall. Peritoneal metastases are formed after exfoliation of free tumor cells from a primary tumor invading the peritoneum. Consequently, most peritoneal metastases originate from abdominal organs such as the colon, rectum, stomach, or ovaria. Cancer cells spread in the abdominal cavity resulting from the natural flow of intraperitoneal fluids and subsequently outgrow into multiple nodular metastases on the peritoneum. Peritoneal metastases remain one of the most oncological challenges in current treatment of various intra-abdominal malignancies [1]. Current systemic palliative chemotherapeutic regimes appear to have only a limited effect in treating peritoneal metastases, both in improving survival and decreasing symptoms of peritoneal metastases such as bowel obstruction or the formation of disabling amounts of ascites. New treatment strategies involving cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy have shown favorable results in numerous intraperitoneal metastasizing intra-abdominal malignancies, such as appendiceal and colorectal cancer. Following the randomized controlled trial by Verwaal et al. [2], cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with limited peritoneal metastases of colorectal cancer (CRC) is now regarded as standard treatment in selected patients (no extraperitoneal disease and sufficient performance status). The goal of cytoreductive surgery (CRS) is to remove all macroscopic malignant disease by performing several visceral resections and peritonectomy procedures. This is followed by a 30–90 min intraperitoneal perfusion of the abdominal cavity using heated chemotherapy. The aim of this so-called hyperthermic intraperitoneal chemotherapy (HIPEC) is to eradicate any remaining microscopic tumor cells. The chemotherapy is generally heated up to 41–43 °C. This is performed for several reasons; first in vitro cancer cells sensitivity is increased in many chemotherapeutic drugs. Additionally, some studies have shown improved pharmacokinetics of chemotherapy in hyperthermic conditions. Currently, various chemotherapeutic drugs, such as mitomycin or cisplatin, are used for HIPEC. Several factors influence the selection of the appropriate drug selection for the use in intraperitoneal chemotherapy. Important drug characteristics are systemic activity in the treating malignancy, concentration-related cytotoxicity, hyperthermic synergy, favorable intraperitoneal pharmacokinetics, adequate tissue penetration, acceptable local and systemic toxicity, and the safety of administration for hospital personnel. Drugs with a direct cytotoxic effect, i.e., not cell cycle specific, will have more potential as in HIPEC the exposure time of the chemotherapeutic drug is limited, and multiple administrations are not feasible in HIPEC. Different chemotherapeutic drugs, and combinations of these, are used for the use in intraperitoneal chemotherapeutic treatment. Table 2.1 gives an overview of current or investigated drugs for HIPEC treatment. The goal of the current chapter is to provide a comprehensive overview on the selection of chemotherapeutic drugs for intraperitoneal chemotherapy in various malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lambert LA. Looking up: recent advances in understanding and treating peritoneal carcinomatosis. CA Cancer J Clin. 2015;65:284–98.

    Article  PubMed  Google Scholar 

  2. Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15:2426–32.

    Article  PubMed  Google Scholar 

  3. Braam HJ, Schellens JH, Boot H, van Sandick JW, Knibbe CA, Boerma D, van Ramshorst B. Selection of chemotherapy for hyperthermic intraperitoneal use in gastric cancer. Crit Rev Oncol Hematol. 2015;95:282–96.

    Article  CAS  PubMed  Google Scholar 

  4. Sugarbaker PH, Van der Speeten K, Anthony Stuart O, Chang D. Impact of surgical and clinical factors on the pharmacology of intraperitoneal doxorubicin in 145 patients with peritoneal carcinomatosis. Eur J Surg Oncol. 2011;37:719–26.

    Article  CAS  PubMed  Google Scholar 

  5. Van der Speeten K, Stuart OA, Chang D, Mahteme H, Sugarbaker PH. Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemother Pharmacol. 2011;68:147–56.

    Article  PubMed  Google Scholar 

  6. Kuzuya T, Yamauchi M, Ito A, Hasegawa M, Hasegawa T, Nabeshima T. Pharmacokinetic characteristics of 5-fluorouracil and mitomycin C in intraperitoneal chemotherapy. J Pharm Pharmacol. 1994;46:685–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jacquet P, Averbach A, Stuart OA, Chang D, Sugarbaker PH. Hyperthermic intraperitoneal doxorubicin: pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother Pharmacol. 1998;41:147–54.

    Article  CAS  PubMed  Google Scholar 

  8. Sugarbaker PH, Stuart OA. Pharmacokinetic and phase II study of heated intraoperative intraperitoneal melphalan. Cancer Chemother Pharmacol. 2007;59:151–5.

    Article  CAS  PubMed  Google Scholar 

  9. O’Dwyer PJ, LaCreta FP, Daugherty JP, Hogan M, Rosenblum NG, O’Dwyer JL, Comis RL. Phase I pharmacokinetic study of intraperitoneal etoposide. Cancer Res. 1991;51:2041–6.

    PubMed  Google Scholar 

  10. Guichard S, Chatelut E, Lochon I, Bugat R, Mahjoubi M, Canal P. Comparison of the pharmacokinetics and efficacy of irinotecan after administration by the intravenous versus intraperitoneal route in mice. Cancer Chemother Pharmacol. 1998;42:165–70.

    Article  CAS  PubMed  Google Scholar 

  11. Turcotte S, Sideris L, Younan R, Drolet P, Dube P. Pharmacokinetics of intraperitoneal irinotecan in a pig model. J Surg Oncol. 2010;101:637–42.

    Article  CAS  PubMed  Google Scholar 

  12. Kamijo Y, Ito C, Nomura M, Sai Y, Miyamoto K. Surfactants influence the distribution of taxanes in peritoneal dissemination tumor-bearing rats. Cancer Lett. 2010;287:182–6.

    Article  CAS  PubMed  Google Scholar 

  13. Shimada T, Nomura M, Yokogawa K, Endo Y, Sasaki T, Miyamoto K, Yonemura Y. Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice. J Pharm Pharmacol. 2005;57:177–81.

    Article  CAS  PubMed  Google Scholar 

  14. Yonemura Y, Endou Y, Bando E, et al. Effect of intraperitoneal administration of docetaxel on peritoneal dissemination of gastric cancer. Cancer Lett. 2004;210:189–96.

    Article  CAS  PubMed  Google Scholar 

  15. Marchettini P, Stuart OA, Mohamed F, Yoo D, Sugarbaker PH. Docetaxel: pharmacokinetics and tissue levels after intraperitoneal and intravenous administration in a rat model. Cancer Chemother Pharmacol. 2002;49:499–503.

    Article  CAS  PubMed  Google Scholar 

  16. de Bree E, Rosing H, Beijnen JH, Romanos J, Michalakis J, Georgoulias V, Tsiftsis DD. Pharmacokinetic study of docetaxel in intraoperative hyperthermic i.p. chemotherapy for ovarian cancer. Anti-Cancer Drugs. 2003;14:103–10.

    Article  PubMed  Google Scholar 

  17. de Bree E, Rosing H, Filis D, et al. Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: a clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15:1183–92.

    Article  PubMed  Google Scholar 

  18. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30:263–7.

    Article  PubMed  Google Scholar 

  19. Klaver YL, Lemmens VE, Creemers GJ, Rutten HJ, Nienhuijs SW, de Hingh IH. Population-based survival of patients with peritoneal carcinomatosis from colorectal origin in the era of increasing use of palliative chemotherapy. Ann Oncol. 2011;22:2250–6.

    Article  CAS  PubMed  Google Scholar 

  20. Bernards N, Creemers GJ, Nieuwenhuijzen GA, Bosscha K, Pruijt JF, Lemmens VE. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann Oncol. 2013;24:3056–60.

    Article  CAS  PubMed  Google Scholar 

  21. Ansaloni L, Coccolini F, Morosi L, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015;112:306–12.

    Article  CAS  PubMed  Google Scholar 

  22. Los G, Mutsaers PH, van der Vijgh WJ, Baldew GS, de Graaf PW, McVie JG. Direct diffusion of cis-diamminedichloroplatinum(II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res. 1989;49:3380–4.

    CAS  PubMed  Google Scholar 

  23. Albanese AM, Albanese EF, Mino JH, Gomez E, Gomez M, Zandomeni M, Merlo AB. Peritoneal surface area: measurements of 40 structures covered by peritoneum: correlation between total peritoneal surface area and the surface calculated by formulas. Surg Radiol Anat. 2009;31:369–77.

    Article  PubMed  Google Scholar 

  24. Verwaal VJ, van Ruth S, de Bree E, van Sloothen GW, van Tinteren H, Boot H, Zoetmulder FA. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.

    Article  PubMed  Google Scholar 

  25. Schmid K, Boettcher MI, Pelz JO, Meyer T, Korinth G, Angerer J, Drexler H. Investigations on safety of hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC) with Mitomycin C. Eur J Surg Oncol. 2006;32:1222–5.

    Article  CAS  PubMed  Google Scholar 

  26. Aarts F, Bleichrodt RP, de Man B, Lomme R, Boerman OC, Hendriks T. The effects of adjuvant experimental radioimmunotherapy and hyperthermic intraperitoneal chemotherapy on intestinal and abdominal healing after cytoreductive surgery for peritoneal carcinomatosis in the rat. Ann Surg Oncol. 2008;15:3299–307.

    Article  CAS  PubMed  Google Scholar 

  27. Pelz JO, Doerfer J, Decker M, Dimmler A, Hohenberger W, Meyer T. Hyperthermic intraperitoneal chemoperfusion (HIPEC) decrease wound strength of colonic anastomosis in a rat model. Int J Color Dis. 2007;22:941–7.

    Article  CAS  Google Scholar 

  28. Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol Hematol. 2016;100:209–22.

    Article  PubMed  Google Scholar 

  29. Chua TC, Yan TD, Saxena A, Morris DL. Should the treatment of peritoneal carcinomatosis by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy still be regarded as a highly morbid procedure?: a systematic review of morbidity and mortality. Ann Surg. 2009;249:900–7.

    Article  PubMed  Google Scholar 

  30. Murakami A, Koga S, Maeta M. Thermochemosensitivity: augmentation by hyperthermia of cytotoxicity of anticancer drugs against human colorectal cancers, measured by the human tumor clonogenic assay. Oncology. 1988;45:236–41.

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe M, Tanaka R, Hondo H, Kuroki M. Effects of antineoplastic agents and hyperthermia on cytotoxicity toward chronically hypoxic glioma cells. Int J Hyperth. 1992;8:131–8.

    Article  CAS  Google Scholar 

  32. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–51.

    Article  CAS  PubMed  Google Scholar 

  33. de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18:2938–47.

    Article  PubMed  Google Scholar 

  34. Elias D, Goere D, Blot F, Billard V, Pocard M, Kohneh-Shahri N, Raynard B. Optimization of hyperthermic intraperitoneal chemotherapy with oxaliplatin plus irinotecan at 43 degrees C after compete cytoreductive surgery: mortality and morbidity in 106 consecutive patients. Ann Surg Oncol. 2007;14:1818–24.

    Article  PubMed  Google Scholar 

  35. Elias D, El Otmany A, Bonnay M, et al. Human pharmacokinetic study of heated intraperitoneal oxaliplatin in increasingly hypotonic solutions after complete resection of peritoneal carcinomatosis. Oncology. 2002;63:346–52.

    Article  CAS  PubMed  Google Scholar 

  36. Elias D, Bonnay M, Puizillou JM, et al. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13:267–72.

    Article  CAS  PubMed  Google Scholar 

  37. Rothenberg ML, Oza AM, Bigelow RH, et al. Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol. 2003;21:2059–69.

    Article  CAS  PubMed  Google Scholar 

  38. Mehta AM, Van den Hoven JM, Rosing H, et al. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int J Pharm. 2015;479:23–7.

    Article  CAS  PubMed  Google Scholar 

  39. De Somer F, Ceelen W, Delanghe J, De Smet D, Vanackere M, Pattyn P, Mortier E. Severe hyponatremia, hyperglycemia, and hyperlactatemia are associated with intraoperative hyperthermic intraperitoneal chemoperfusion with oxaliplatin. Perit Dial Int. 2008;28:61–6.

    CAS  PubMed  Google Scholar 

  40. Hompes D, D’Hoore A, Wolthuis A, Fieuws S, Mirck B, Bruin S, Verwaal V. The use of Oxaliplatin or Mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: a comparative study. J Surg Oncol. 2014;109:527–32.

    Article  CAS  PubMed  Google Scholar 

  41. Prada-Villaverde A, Esquivel J, Lowy AM, et al. The American Society of Peritoneal Surface Malignancies evaluation of HIPEC with Mitomycin C versus Oxaliplatin in 539 patients with colon cancer undergoing a complete cytoreductive surgery. J Surg Oncol. 2014;110:779–85.

    Article  CAS  PubMed  Google Scholar 

  42. Jaaback K, Johnson N, Lawrie TA. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev. 2016;(1):CD005340. doi:CD005340.

    Google Scholar 

  43. Polyzos A, Tsavaris N, Kosmas C, et al. A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology. 1999;56:291–6.

    Article  CAS  PubMed  Google Scholar 

  44. Yen MS, Juang CM, Lai CR, Chao GC, Ng HT, Yuan CC. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. Int J Gynaecol Obstet. 2001;72:55–60.

    Article  CAS  PubMed  Google Scholar 

  45. Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34–43.

    Article  CAS  PubMed  Google Scholar 

  46. Huo YR, Richards A, Liauw W, Morris DL. Hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery (CRS) in ovarian cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2015;41:1578–89.

    Article  CAS  PubMed  Google Scholar 

  47. Gore ME, Fryatt I, Wiltshaw E, Dawson T, Robinson BA, Calvert AH. Cisplatin/carboplatin cross-resistance in ovarian cancer. Br J Cancer. 1989;60:767–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spiliotis J, Halkia E, Lianos E, Kalantzi N, Grivas A, Efstathiou E, Giassas S. Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: a prospective randomized phase III study. Ann Surg Oncol. 2015;22:1570–5.

    Article  CAS  PubMed  Google Scholar 

  49. Helm CW, Richard SD, Pan J, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer: first report of the HYPER-O registry. Int J Gynecol Cancer. 2010;20:61–9.

    Article  PubMed  Google Scholar 

  50. Bakrin N, Cotte E, Golfier F, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for persistent and recurrent advanced ovarian carcinoma: a multicenter, prospective study of 246 patients. Ann Surg Oncol. 2012;19:4052–8.

    Article  CAS  PubMed  Google Scholar 

  51. van Driel WJ, Lok CA, Verwaal V, Sonke GS. The role of hyperthermic intraperitoneal intraoperative chemotherapy in ovarian cancer. Curr Treat Options in Oncol. 2015;16:14. 015-0329-5

    Article  Google Scholar 

  52. Yoo CH, Noh SH, Shin DW, Choi SH, Min JS. Recurrence following curative resection for gastric carcinoma. Br J Surg. 2000;87:236–42.

    Article  CAS  PubMed  Google Scholar 

  53. Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.

    Article  CAS  PubMed  Google Scholar 

  54. Sun J, Song Y, Wang Z, et al. Benefits of hyperthermic intraperitoneal chemotherapy for patients with serosal invasion in gastric cancer: a meta-analysis of the randomized controlled trials. BMC Cancer. 2012;12:526. 2407-12-526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011;18:1575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Montagnani F, Turrisi G, Marinozzi C, Aliberti C, Fiorentini G. Effectiveness and safety of oxaliplatin compared to cisplatin for advanced, unresectable gastric cancer: a systematic review and meta-analysis. Gastric Cancer. 2011;14:50–5.

    Article  CAS  PubMed  Google Scholar 

  57. Eriguchi M, Nonaka Y, Yanagie H, Yoshizaki I, Takeda Y, Sekiguchi M. A molecular biological study of anti-tumor mechanisms of an anti-cancer agent Oxaliplatin against established human gastric cancer cell lines. Biochem Pharmacol. 2003;57:412–5.

    CAS  Google Scholar 

  58. Los G, Mutsaers PH, Ruevekamp M, McVie JG. The use of oxaliplatin versus cisplatin in intraperitoneal chemotherapy in cancers restricted to the peritoneal cavity in the rat. Cancer Lett. 1990;51:109–17.

    Article  CAS  PubMed  Google Scholar 

  59. Wu XJ, Yuan P, Li ZY et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves the survival of gastric cancer patients with ovarian metastasis and peritoneal dissemination. Tumour Biol. 2013;34(1):463–9.

    Google Scholar 

  60. Votanopoulos K, Ihemelandu C, Shen P, Stewart J, Russell G, Levine EA. A comparison of hematologic toxicity profiles after heated intraperitoneal chemotherapy with oxaliplatin and mitomycin C. J Surg Res. 2013;179:e133–9.

    Article  CAS  PubMed  Google Scholar 

  61. Chen XL, Chen XZ, Yang C, et al. Docetaxel, cisplatin and fluorouracil (DCF) regimen compared with non-taxane-containing palliative chemotherapy for gastric carcinoma: a systematic review and meta-analysis. PLoS One. 2013;8:e60320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hironaka S, Zenda S, Boku N, Fukutomi A, Yoshino T, Onozawa Y. Weekly paclitaxel as second-line chemotherapy for advanced or recurrent gastric cancer. Gastric Cancer. 2006;9:14–8.

    Article  CAS  PubMed  Google Scholar 

  63. Miyamoto K, Shimada T, Sawamoto K, Sai Y, Yonemura Y. Disposition kinetics of taxanes in peritoneal dissemination. Gastroenterol Res Pract. 2012;2012:963403.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Morgan Jr RJ, Doroshow JH, Synold T, et al. Phase I trial of intraperitoneal docetaxel in the treatment of advanced malignancies primarily confined to the peritoneal cavity: dose-limiting toxicity and pharmacokinetics. Clin Cancer Res. 2003;9:5896–901.

    CAS  PubMed  Google Scholar 

  65. de Bree E, Romanos J, Michalakis J, Relakis K, Georgoulias V, Melissas J, Tsiftsis DD. Intraoperative hyperthermic intraperitoneal chemotherapy with docetaxel as second-line treatment for peritoneal carcinomatosis of gynaecological origin. Anticancer Res. 2003;23:3019–27.

    PubMed  Google Scholar 

  66. de Cuba EM, de Hingh IH, Sluiter NR, et al. Angiogenesis-related markers and prognosis after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Ann Surg Oncol. 2016;23:1601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sluiter NR, de Cuba EM, Kwakman R, et al. Versican and vascular endothelial growth factor expression levels in peritoneal metastases from colorectal cancer are associated with survival after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Clin Exp Metastasis. 2016;33:297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Braam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Braam, H.J., Hoogwater, F.J.H. (2017). Selection of Chemotherapy in Hyperthermic Intraperitoneal Chemotherapy. In: Canbay, E. (eds) Unusual Cases in Peritoneal Surface Malignancies . Springer, Cham. https://doi.org/10.1007/978-3-319-51523-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51523-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51522-9

  • Online ISBN: 978-3-319-51523-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics