Abstract
Theoretically, optimal control refers to any type of control that refers to optimization methods. In reality, two main domains can be distinguished, on one side open-loop control that is also called dynamic optimization for continuous nonlinear state-space systems and dynamic programming for discrete systems. This will be explained with reference to variational calculus and includes Hamilton-Jacobi theory, Pontryagin’s maximum principle and Bellman optimality principle. On the other side, these theories are applied to closed-loop control in linear quadratic control, for perfect or stochastic systems, in continuous or discrete time. Application examples for multivariable systems illustrate linear quadratic control under different forms.
The original version of this chapter has been revised: Figs. 14.12, 14.13 and 14.14 have been corrected. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-61143-3_22.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
A functional is a function of functions: the function \(F(\mathbf {x}(t),\mathbf {u}(t),t)\) depends on functions \(\mathbf {x}(t)\) and \(\mathbf {u}(t)\).
- 2.
Several mathematical relations are useful:
(a) We denote by \(y_z\) the partial derivative \(\partial y / \partial z\), where z is a scalar. If y is scalar and \(\mathbf {z}\) a vector, the notation \(y_{\mathbf {z}}\) is the gradient vector of the partial derivatives \(\partial y / \partial z_i\). If \(\mathbf {y}\) and \(\mathbf {z}\) are vectors, the notation \(\mathbf {y}_{\mathbf {z}}\) represents the Jacobian matrix of the current element \(\partial y_i / \partial z_j\).
(b) The derivative with respect to \(\mathbf {f}\) of the integral with fixed boundaries
$$ I = \int _{x_0}^{x_1} F(x,\mathbf {f}(x),{\dot{\mathbf {f}}}(x)) dx $$is equal to
$$ \displaystyle {\frac{dI}{d\mathbf {f}}} = \int _{x_0}^{x_1} \left[ F_{\mathbf {f}} - \displaystyle {\frac{d}{dx}} F_{{\dot{\mathbf {f}}}} \right] dx $$(c) According to the Euler–Lagrange lemma (Cartan 1967), if \(\mathbf {C}(x)\) is a continuous function (vector) on [a, b] verifying
$$ \int _{a}^{b} \mathbf {C}^T(x) \mathbf {v}(x) dx = 0 $$for all function (vector) \(\mathbf {v}(x)\) which is continuous and becomes zero at the boundaries, then \(\mathbf {C}(x)\) is zero everywhere on [a, b].
- 3.
Other authors use the definition of the Hamiltonian with an opposite sign before the functional, i.e.
$$ H(\mathbf {x}(t),\mathbf {u}(t),\mathbf {\psi }(t),t) = F(\mathbf {x}(t),\mathbf {u}(t),t) + \mathbf {\psi }^T(t) \, \mathbf {f}(\mathbf {x}(t),\mathbf {u}(t),t) $$which changes nothing, as long as we remain at the level of first-order conditions. However, the sign changes in condition (14.87). See also the footnote in Sect. 14.4.6.
- 4.
In many articles, authors refer to the Minimum Principle, which simply results from the definition of the Hamiltonian H with an opposite sign of the functional. Comparing to definition (14.102), they define their Hamiltonian as
With that definition, the optimal control \(u^*\) minimizes the Hamiltonian.
- 5.
This notation is that of Pontryaguine et al. (1974). The superscript corresponds to the rank i of the coordinate while the subscripts (0 and 1) or (0 and f), according to the authors, are reserved for the terminal conditions.
- 6.
A matrix \(\mathbf {A}\) of dimension \((2n \times 2n)\) is called Hamiltonian if \(\mathbf {J}^{-1} \, \mathbf {A}^T \, \mathbf {J} = - \mathbf {A}\) or \(\mathbf {J} = - \mathbf {A}^{-T} \, \mathbf {J} \, \mathbf {A}\), where \(\mathbf {J}\) is equal to: \(\left[ \begin{array}{ll} \mathbf {0} &{} \mathbf {I} \\ \mathbf {I} &{} \mathbf {0} \end{array} \right] \).
An important property (Laub 1979) of Hamiltonian matrices is that if \(\lambda \) is an eigenvalue of a Hamiltonian matrix, \(-\lambda \) is also an eigenvalue with the same multiplicity.
- 7.
A matrix \(\mathbf {A}\) is symplectic, when, given the matrix \(J = \left[ \begin{array}{ll} \mathbf {0}&{} \mathbf {I} \\ -\mathbf {I} &{} \mathbf {0} \end{array} \right] \), the matrix \(\mathbf {A}\) verifies \(\mathbf {A}^T \, \mathbf {J} \, \mathbf {A} = \mathbf {J}\).
If \(\lambda \) is an eigenvalue of a symplectic matrix \(\mathbf {A}\), \(1/\lambda \) is also an eigenvalue of \(\mathbf {A}\); \(\lambda \) is thus also an eigenvalue of \(\mathbf {A}^{-1}\) (Laub 1979).
References
B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice Hall, Englewood Cliffs, New Jersey, 1971.
B.D.O. Anderson and J.B. Moore. Optimal Control, Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, New Jersey, 1990.
R. Aris. Studies in optimization. II. Optimal temperature gradients in tubular reactors. Chem. Eng. Sci., 13(1):18–29, 1960.
R. Aris. The Optimal Design of Chemical Reactors: A Study in Dynamic Programming. Academic Press, New York, 1961.
R. Aris, D.F. Rudd, and N.R. Amundson. On optimum cross current extraction. Chem. Eng. Sci., 12:88–97, 1960.
W.F. Arnold and A.J. Laub. Generalized eigenproblem algorithms and software for algebraic Riccati equations. IEEE Proceedings, 72(12):1746–1754, 1984.
M. Athans and P.L. Falb. Optimal Control: An Introduction to the Theory and its Applications. Mac Graw Hill, New York, 1966.
J.R. Banga and E.F. Carrasco. Rebuttal to the comments of Rein Luus on “Dynamic optimization of batch reactors using adaptive stochastic algorithms”. Ind. Eng. Chem. res., 37:306–307, 1998.
R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.
R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1962.
L.T. Biegler. Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comp. Chem. Eng., 8:243–248, 1984.
B. Bojkov and R. Luus. Optimal control of nonlinear systems with unspecified final times. Chem. Eng. Sci., 51(6):905–919, 1996.
P. Borne, G. Dauphin-Tanguy, J.P. Richard, F. Rotella, and I. Zambettakis. Commande et Optimisation des Processus. Technip, Paris, 1990.
R. Boudarel, J. Delmas, and P. Guichet. Commande Optimale des Processus. Dunod, Paris, 1969.
A.E. Bryson. Dynamic Optimization. Addison Wesley, Menlo Park, California, 1999.
A.E. Bryson and Y.C. Ho. Applied Optimal Control. Hemisphere, Washington, 1975.
E.F. Carrasco and J.R. Banga. Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind. Eng. Chem. Res., 36:2252–2261, 1997.
H. Cartan. Cours de Calcul Différentiel. Hermann, Paris, 1967.
J.P. Corriou and S. Rohani. A new look at optimal control of a batch crystallizer. AIChE J., 54(12):3188–3206, 2008.
J.E. Cuthrell and L.T. Biegler. On the optimization of differential-algebraic process systems. A.I.Ch.E. J., 33:1257–1270, 1987.
J. Dorato and A.H. Levis. IEEE Trans. A. C., AC-16(6):613–620, 1971.
J.C. Doyle. Guaranteed margins for LQG regulators. IEEE Trans. Automat. Control, AC-23:756–757, 1978.
J.N. Farber and R.L. Laurence. The minimum time problem in batch radical polymerization: a comparison of two policies. Chem. Eng. Commun., 46:347–364, 1986.
A. Feldbaum. Principes Théoriques des Systèmes Asservis Optimaux. Mir, Moscou, 1973. Edition Française.
M. Fikar, M.A. Latifi, J.P. Corriou, and Y. Creff. Cvp-based optimal control of an industrial depropanizer column. Comp. Chem. Engn., 24:909–915, 2000.
R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 1991.
C. Foulard, S. Gentil, and J.P. Sandraz. Commande et Régulation par Calculateur Numérique. Eyrolles, Paris, 1987.
C. Gentric, F. Pla, M.A. Latifi, and J.P. Corriou. Optimization and non-linear control of a batch emulsion polymerization reactor. Chem. Eng. J., 75:31–46, 1999.
E.D. Gilles and B. Retzbach. Modeling, simulation and control of distillation columns with sharp temperature profiles. IEEE Trans. Automat. Control, AC-28(5):628–630, 1983.
E.D. Gilles, B. Retzbach, and F. Silberberger. Modeling, simulation and control of an extractive distillation column. In Computer Applications to Chemical Engineering, volume 124 of ACS Symposium Series, pages 481–492, 1980.
C.J. Goh and K.L. Teo. Control parametrization: a unified approach to optimal control problems with general constraints. Automatica, 24:3–18, 1988.
M.J. Grimble and M.A. Johnson. Optimal Control and Stochastic Estimation: Deterministic Systems, volume 1. Wiley, Chichester, 1988a.
M.J. Grimble and M.A. Johnson. Optimal Control and Stochastic Estimation: Stochastic Systems, volume 2. Wiley, Chichester, 1988b.
T. Kailath. Linear Systems Theory. Prentice Hall, Englewood Cliffs, New Jersey, 1980.
R.E. Kalman. A new approach to linear filtering and prediction problems. Trans. ASME Ser. D, J. Basic Eng., 82:35–45, 1960.
R.E. Kalman. Mathematical description of linear dynamical systems. J. SIAM Control, series A:152–192, 1963.
R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory. Trans. ASME Ser. D, J. Basic Eng., 83:95–108, 1961.
A. Kaufmann and R. Cruon. La Programmation Dynamique. Gestion Scientifique Séquentielle. Dunod, Paris, 1965.
D.E. Kirk. Optimal Control Theory. An Introduction. Prentice Hall, Englewood Cliffs, New Jersey, 1970.
H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-Interscience, New York, 1972.
Y.D. Kwon and L.B. Evans. A coordinate transformation method for the numerical solution of non-linear minimum-time control problems. AIChE J., 21:1158–, 1975.
F. Lamnabhi-Lagarrigue. Singular optimal control problems: on the order of a singular arc. Systems & control letters, 9:173–182, 1987.
M.A. Latifi, J.P. Corriou, and M. Fikar. Dynamic optimization of chemical processes. Trends in Chem. Eng., 4:189–201, 1998.
A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control, AC-24(6):913–921, 1979.
E.B. Lee and L. Markus. Foundations of Optimal Control Theory. Krieger, Malabar, Florida, 1967.
F.L. Lewis. Optimal Control. Wiley, New York, 1986.
C.F. Lin. Advanced Control Systems Design. Prentice Hall, Englewood Cliffs, New Jersey, 1994.
R. Luus. Application of dynamic programming to high-dimensional nonlinear optimal control systems. Int. J. Cont., 52(1):239–250, 1990.
R. Luus. Application of iterative dynamic programming to very high-dimensional systems. Hung. J. Ind. Chem., 21:243–250, 1993.
R. Luus. Optimal control of bath reactors by iterative dynamic programming. J. Proc. Cont., 4(4):218–226, 1994.
R. Luus. Numerical convergence properties of iterative dynamic programming when applied to high dimensional systems. Trans. IChemE, part A, 74:55–62, 1996.
R. Luus and B. Bojkov. Application of iterative dynamic programming to time-optimal control. Chem. Eng. Res. Des., 72:72–80, 1994.
R. Luus and D. Hennessy. Optimization of fed-batch reactors by the Luus-Jaakola optimization procedure. Ind. Eng. Chem. Res., 38:1948–1955, 1999.
J.M. Maciejowski. Multivariable Feedback Design. Addison-Wesley, Wokingham, England, 1989.
W. Mekarapiruk and R. Luus. Optimal control of inequality state constrained systems. Ind. Eng. Chem. Res., 36:1686–1694, 1997.
G. Pannocchia, N. Laachi, and J.B. Rawlings. A candidate to replace PID control: SISO-constrained LQ control. AIChE J., 51(4):1178–1189, 2005.
L. Pontryaguine, V. Boltianski, R. Gamkrelidze, and E. Michtchenko. Théorie Mathématique des Processus Optimaux. Mir, Moscou, 1974. Edition Française.
L. Pun. Introduction à la Pratique de l’Optimisation. Dunod, Paris, 1972.
W.H. Ray and J. Szekely. Process Optimization with Applications in Metallurgy and Chemical Engineering. Wiley, New York, 1973.
S.M. Roberts. Dynamic Programming in Chemical Engineering and Process Control. Academic Press, New York, 1964.
S.M. Roberts and C.G. Laspe. Computer control of a thermal cracking reaction. Ind. Eng. Chem., 53(5):343–348, 1961.
K. Schittkowski. NLPQL: A Fortran subroutine solving constrained nonlinear programming problems. Ann. Oper. Res., 5:485–500, 1985.
R. Soeterboek. Predictive Control - A Unified Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.
G. Stein and M. Athans. The LQG/LTR procedure for multivariable feedback control design. IEEE Trans. Automat. Control, AC-32(2):105–114, 1987.
R.F. Stengel. Optimal control and estimation. Courier Dover Publications, 1994.
K.L. Teo, C.J. Goh, and K.H. Wong. A Unified Computational Approach to Optimal Control Problems. Longman Scientific & Technical, Harlow, Essex, England, 1991.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Corriou, JP. (2018). Optimal Control. In: Process Control. Springer, Cham. https://doi.org/10.1007/978-3-319-61143-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-61143-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61142-6
Online ISBN: 978-3-319-61143-3
eBook Packages: EngineeringEngineering (R0)