Skip to main content

CRISPR and Salty: CRISPR-Cas Systems in Haloarchaea

  • Chapter
  • First Online:
RNA Metabolism and Gene Expression in Archaea

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 32))

Abstract

CRISPR-Cas (CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats and Cas: CRISPR associated) systems are unique defence mechanisms since they are able to adapt to new invaders and are heritable. CRISPR-Cas systems facilitate the sequence-specific elimination of invading genetic elements in prokaryotes, they are found in 45% of bacteria and 85% of archaea. Their general features have been studied in detail, but subtype- and species-specific variations await investigation. Haloarchaea is one of few archaeal classes in which CRISPR-Cas systems have been investigated in more than one genus. Here, we summarize the available information on CRISPR-Cas defence in three Haloarchaea: Haloferax volcanii, Haloferax mediterranei and Haloarcula hispanica. Haloarchaea share type I CRISPR-Cas systems, with subtype I-B being dominant. Type I-B systems rely on Cas proteins Cas5, Cas7, and Cas8b for the interference reaction and these proteins have been shown to form a Cascade (CRISPR-associated complex for antiviral defence) -like complex in Hfx (Haloferax). volcanii. Cas6b is the endonuclease for crRNA (CRISPR RNA) maturation in type I-B systems but the protein is dispensable for interference in Hfx. volcanii. Haloarchaea share a common repeat sequence and crRNA-processing pattern. A prerequisite for successful invader recognition in Hfx. volcanii is base pairing over a ten-nucleotide-long non-contiguous seed sequence. Moreover, Hfx. volcanii and Har (Haloarcula). hispanica rely each on certain specific PAM (protospacer adjacent motif) sequences to elicit interference, but they share only one PAM sequence. Primed adaptation in Har. hispanica relies on another set of PAM sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cas12a was formerly termed Cpf1.

  2. 2.

    PFS is the abbreviation for protospacer flanking site.

  3. 3.

    Halorubrum.

  4. 4.

    Haloquadratum.

References

  • Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R (2014) CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics 30:i489–i496. doi:10.1093/bioinformatics/btu1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amitai G, Sorek R (2016) CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14:67–76. doi:10.1038/nrmicro.2015.1014. Epub 2016 Jan 11

  • Arslan Z, Hermanns V, Wurm R, Wagner R, Pul U (2014) Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res 42:7884–7893. doi:10.1093/nar/gku7510. Epub 2014 Jun 11

  • Barrangou R (2015) Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol 16:247. doi:10.1186/s13059-13015-10816-13059

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437. doi: 10.1093/nar/gkt7520. Epub 2013 Jun 12

  • Blosser TR, Loeff L, Westra ER, Vlot M, Kunne T, Sobota M, Dekker C, Brouns SJ, Joo C (2015) Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell 58:60–70. doi:10.1016/jmolcel201510011028. Epub 2015 Mar 15

    Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Brendel J, Stoll B, Lange SJ, Sharma K, Lenz C, Stachler AE, Maier LK, Richter H, Nickel L, Schmitz RA, Randau L, Allers T, Urlaub H, Backofen R, Marchfelder A (2014) A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. J Biol Chem 289:7164–7177. doi: 10.1074/jbc.M7113.508184. Epub 2014 Jan 23

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–241. doi:10.1038/nature21059. Epub 2016 Dec 22

  • Cass SD, Haas KA, Stoll B, Alkhnbashi O, Sharma K, Urlaub H, Backofen R, Marchfelder A, Bolt EL (2015) The role of Cas8 in type I CRISPR interference. Biosci Rep 5:5

    Google Scholar 

  • Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci U S A 84:8530–8534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441. Epub 2015 May 19

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823 doi:10.1126/science1231143

    Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logogenerator. Genome Res 14:1188–90

    Google Scholar 

  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945. doi:10.1038/ncomms1937

    Article  PubMed  Google Scholar 

  • Delmas S, Shunburne L, Ngo HP, Allers T (2009) Mre11-Rad50 promotes rapid repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 5:e1000552. Epub 2009 Jul 10

    Google Scholar 

  • Deng L, Kenchappa CS, Peng X, She Q, Garrett RA (2012) Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res 40:2470–2480. Epub 2011 Dec 1

    Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400. Epub 2007 Dec 13

    Google Scholar 

  • Erdmann S, Garrett RA (2012) Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol Microbiol 85:1044–1056. doi:10.1111/j1365-2958201208171x. Epub 2012 Jul 27

    Google Scholar 

  • Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89. doi: 10.1016/j.mib.2014.1002.1007. Epub 2014 Mar 15

  • Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum SA, Staals RH, Brouns SJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 111:E1629–E1638. doi:10.1073/pnas.1400071111. Epub 2014 Apr 17

    Google Scholar 

  • Fischer S, Maier LK, Stoll B, Brendel J, Fischer E, Pfeiffer F, Dyall-Smith M, Marchfelder A (2012) An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J Biol Chem 287:33351–33365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Heredia I, Martin-Cuadrado AB, Mojica FJ, Santos F, Mira A, Anton J, Rodriguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7:e33802. doi:10.31371/journalpone0033802. Epub 2012 Mar 30

    Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Garrett RA, Vestergaard G, Shah SA (2011) Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 19:549–556. Epub 2011 Sep 22

    Google Scholar 

  • Gleditzsch D, Muller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L (2016) Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44:5872–5882. doi:10.1093/nar/gkw5469. Epub 2016 May 23

  • Goren MG, Doron S, Globus R, Amitai G, Sorek R, Qimron U (2016) Repeat size determination by two molecular rulers in the Type I-E CRISPR array. Cell Rep 16:2811–2818. doi:10.1016/j.celrep.2016.2808.2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60. Epub 2005 Nov 11

    Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956. doi:10.1016/j.cell.2009.1007.1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV, III, Graveley BR, Terns RM, Terns MP (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302. Epub 2012 Jan 15

    Google Scholar 

  • Hille F, Charpentier E (2016) CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 371(1707):20150496. doi:10.20151098/rstb.20152015.20150496

    Google Scholar 

  • Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, Doudna JA (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci U S A 111:6618–6623. doi:10.1073/pnas.1405079111. Epub 2014 Apr 18

    Google Scholar 

  • Ivancic-Bace I, Cass SD, Wearne SJ, Bolt EL (2015) Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 43:10821–10830. doi:10.11093/nar/gkv11213. Epub 2015 Nov 17

    Google Scholar 

  • Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, van der Oost J, Terwilliger TC, Read RJ, Wiedenheft B (2014) Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345:1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002a) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, van Embden JD, Gaastra W, Schouls LM (2002b) Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:23–33

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA (2013) Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9:e1003844. doi:10.1001371/journalpgen1003844. Epub 2013 Sep 26

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829. Epub 2012 Jun 28

    Google Scholar 

  • Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul Ü, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529–536

    Article  CAS  PubMed  Google Scholar 

  • Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61

    Article  PubMed  PubMed Central  Google Scholar 

  • Künne T, Swarts DC, Brouns SJ (2014) Planting the seed: target recognition of short guide RNAs. Trends Microbiol 22:74–83. doi:10.1016/j.tim.2013.1012.1003. Epub 2014 Jan 14

  • Künne T, Kieper SN, Bannenberg JW, Vogel AI, Miellet WR, Klein M, Depken M, Suarez-Diez M, Brouns SJ (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol Cell 63:852–864. doi:10.1016/j.molcel.2016.1007.1011. Epub 2016 Aug 18

    Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327. Epub 2010 Mar 29

    Google Scholar 

  • Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R (2013) CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res 41:8034–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510. doi: 10.1038/nature14302. Epub 2015 Apr 13

  • Li H (2015) Structural Principles of CRISPR RNA Processing. Structure 23:13–20. doi:10.1016/j.str.2014.1010.1006. Epub 2014 Nov 26

  • Li M, Liu H, Han J, Liu J, Wang R, Zhao D, Zhou J, Xiang H (2013) Characterization of CRISPR RNA biogenesis and Cas6 cleavage-mediated inhibition of a provirus in the haloarchaeon Haloferax mediterranei. J Bacteriol 195:867–875. doi:10.1128/JB.01688-01612. Epub 2012 Dec 14

  • Li M, Wang R, Xiang H (2014a) Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res 42:7226–7235. doi:10.1093/nar/gku7389. Epub 2014 May 26

  • Li M, Wang R, Zhao D, Xiang H (2014b) Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 42:2483–2492. doi:10.1093/nar/gkt1154. Epub 2013 Nov 21

  • Luo ML, Mullis AS, Leenay RT, Beisel CL (2015) Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43:674–681. doi:10.1093/nar/gku1971. Epub 2014 Oct 17

  • Maier LK, Fischer S, Stoll B, Brendel J, Pfeiffer F, Dyall-Smith M, Marchfelder A (2012) The immune system of halophilic archaea. Mob Genet Elements 2:228–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier LK, Lange SJ, Stoll B, Haas KA, Fischer S, Fischer E, Duchardt-Ferner E, Wohnert J, Backofen R, Marchfelder A (2013a) Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol 10:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier LK, Stoll B, Brendel J, Fischer S, Pfeiffer F, Dyall-Smith M, Marchfelder A (2013b) The ring of confidence: a haloarchaeal CRISPR/Cas system. Biochem Soc Trans 41:374–378. doi:10.1042/BST20120263

    Article  CAS  PubMed  Google Scholar 

  • Maier LK, Dyall-Smith M, Marchfelder A (2015a) The adaptive immune system of Haloferax volcanii. Life (Basel) 5:521–537. doi:10.3390/life5010521

    Google Scholar 

  • Maier LK, Stachler AE, Saunders SJ, Backofen R, Marchfelder A (2015b) An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein. J Biol Chem 290:4192–4201. doi:10.1074/jbc.M4114.617506. Epub 2014 Dec 15

  • Makarova KS, Aravind L, Wolf YI, Koonin EV (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6:38. doi:10.1186/1745-6150-1186-1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736. doi:10.1038/nrmicro3569. Epub 2015 Sep 28

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147. doi:10.1126/science.aad5147

  • Mojica FJ, Rodriguez-Valera F (2016) The discovery of CRISPR in archaea and bacteria. FEBS J 283:3162–3169. doi:10.1111/febs.13766. Epub 2016 Jun 15

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  CAS  PubMed  Google Scholar 

  • Mulepati S, Heroux A, Bailey S (2014) Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345:1479–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickel L, Weidenbach K, Jäger D, Backofen R, Lange SJ, Heidrich N, Schmitz RA (2013) Two CRISPR-Cas systems in Methanosarcina mazei strain Göo1 display common processing features despite belonging to different types I and III. RNA Biol 10:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewoehner O, Jinek M, Doudna JA (2014) Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res 42:1341–1353. doi:10.1093/nar/gkt1922. Epub 2013 Oct 22

  • Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T (2007) Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 3:e77. Epub 2007 Apr 5

    Google Scholar 

  • Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535–538. doi:10.1038/nature15760. Epub 2015 Oct 21

  • Oren A (2006) The order halobacteriales. In: Dworkin M, DeLong EF, Stackebrandt E, Lory S, Thompson F (eds) The prokaryotes, vol 3. Springer, New York, pp 113–164

    Chapter  Google Scholar 

  • Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R (2012) Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol 194:2491–2500. doi:10.1128/JB.00206-00212. Epub 2012 Mar 9

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  CAS  PubMed  Google Scholar 

  • Pul Ü, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.1102.1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M (2015) Efficient programmable gene silencing by Cascade. Nucleic Acids Res 43:237–246. doi:10.1093/nar/gku1257. Epub 2014 Nov 30

  • Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L (2012) Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res 40:9887–9896. doi:10.1093/nar/gks9737. Epub 2012 Aug 8

  • Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, McNeil MB, Staals RH, Fineran PC (2014) Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res 42:8516–8526. doi:10.1093/nar/gku8527. Epub 2014 Jul 12

  • Sampson TR, Weiss DS (2014) Exploiting CRISPR/Cas systems for biotechnology. Bioessays 36:34–38. doi:10.1002/bies.201300135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46:606–615. doi:101016/jmolcel201210031020. Epub 2012 Apr 19

    Google Scholar 

  • Scholz I, Lange SJ, Hein S, Hess WR, Backofen R (2013) CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS One 8:e56470. doi:10.51371/journalpone0056470. Epub 2013 Feb 18

    Google Scholar 

  • Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJ, Severinov K (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108:10098–10103. Epub 2011 Jun 6

    Google Scholar 

  • Semenova E, Savitskaya E, Musharova O, Strotskaya A, Vorontsova D, Datsenko KA, Logacheva MD, Severinov K (2016) Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. Proc Natl Acad Sci U S A 113:7626–7631. doi:10.1073/pnas.1602639113. Epub 2016 Jun 20

    Google Scholar 

  • Shah SA, Garrett RA (2011) CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol 162:27–38. Epub 2010 Sep 21

    Google Scholar 

  • Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:5

    Article  Google Scholar 

  • Shao Y, Li H (2013) Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6. Structure 21:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397. doi:101016/jmolcel201510101008. Epub 2015 Oct 22

    Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182. doi:10.1038/nrmicro.2016.1184. Epub 2017 Jan 23

  • Staals RH, Brouns SJ (2013) Distribution and mechanism of the type I CRISPR-Cas systems. In: Barrangou R, van der Oost J (eds) CRISPR-Cas systems. Springer, Berlin, pp 145–169

    Chapter  Google Scholar 

  • Staals RH, Jackson SA, Biswas A, Brouns SJ, Brown CM, Fineran PC (2016) Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat Commun 7:12853. doi:10.1038/ncomms12853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachler AE, Marchfelder A (2016) Gene repression in Haloarchaea using the CRISPR (clustered regularly interspaced short palindromic repeats) – Cas I-B system. J Biol Chem 291:15226–15242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58:568–574. doi:10.1016/j.molcel.2015.1002.1032

    Article  CAS  PubMed  Google Scholar 

  • Sternberg SH, Richter H, Charpentier E, Qimron U (2016) Adaptation in CRISPR-Cas systems. Mol Cell 61:797–808. doi:10.1016/jmolcel201610011030. Epub 2016 Mar 13

    Google Scholar 

  • Stoll B, Maier LK, Lange SJ, Brendel J, Fischer S, Backofen R, Marchfelder A (2013) Requirements for a successful defence reaction by the CRISPR-Cas subtype I-B system. Biochem Soc Trans 41:1444–1448. doi:10.1042/BST20130098

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Swarts DC, Mosterd C, van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7:e35888. doi:10.31371/journalpone0035888. Epub 2012 Apr 27

    Google Scholar 

  • Vestergaard G, Garrett RA, Shah SA (2014) CRISPR adaptive immune systems of Archaea. RNA Biol 11:156–167. doi:10.4161/rna.27990. Epub 2014 Feb 7

  • Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E (2015) Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 43:10848–10860. doi:10.11093/nar/gkv11261. Epub 2015 Nov 19

    Google Scholar 

  • Wang R, Zheng H, Preamplume G, Shao Y, Li H (2012) The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex. Protein Sci 21:405–417. doi:10.1002/pro.2028. Epub 2012 Feb 9

  • Wang J, Li J, Zhao H, Sheng G, Wang M, Yin M, Wang Y (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163:840–853. doi:10.1016/jcell201510101008. Epub 2015 Oct 17.

    Google Scholar 

  • Wang R, Li M, Gong L, Hu S, Xiang H (2016) DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica. Nucleic Acids Res 44:4266–4277. doi:10.1093/nar/gkw4260. Epub 2016 Apr 16

  • Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJ (2013) Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet 9:e1003742. doi:10.1001371/journalpgen1003742. Epub 2013 Sep 5

    Google Scholar 

  • Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ, Doudna JA (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108:10092–10097. Epub 2011 May 2

    Google Scholar 

  • Woods WG, Dyall-Smith ML (1997) Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23:791–797

    Article  CAS  PubMed  Google Scholar 

  • Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576. doi:10.1093/nar/gks5216. Epub 2012 Mar 8

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. doi:10.1016/j.cell.2015.1009.1038. Epub 2015 Sep 25

    Google Scholar 

  • Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45:303–313. doi:10.1016/j.molcel.2011.1012.1013. Epub 2012 Jan 15

    Google Scholar 

  • Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, Gong W, Wei Z, Wang Y (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515(7525):147–150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Marchfelder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maier, LK., Alkhnbashi, O.S., Backofen, R., Marchfelder, A. (2017). CRISPR and Salty: CRISPR-Cas Systems in Haloarchaea. In: Clouet-d'Orval, B. (eds) RNA Metabolism and Gene Expression in Archaea. Nucleic Acids and Molecular Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-65795-0_11

Download citation

Publish with us

Policies and ethics