Skip to main content

Non-instantaneous Impulses in Differential Equations

  • Chapter
  • First Online:
Non-Instantaneous Impulses in Differential Equations
  • 625 Accesses

  • 6 Citations

Abstract

The case of differential equations with instantaneous impulses is studied in the literature; so we begin with a brief overview of its statements and later we will compare it with the case of non-instantaneous impulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. R. Agarwal, D. O’Regan, S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 53(1),147–168 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Bai, J.J. Nieto, Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. (2017). http://dx.doi.org/10.1016/j.aml.2017.02.019

    MATH  Google Scholar 

  3. A. Chadha, D.N. Pandey, Existence of the mild solution for impulsive semilinear differential equation. Int. J. Partial Differ. Equ. 2014, Article ID 640931, 8 p. (2014)

    Google Scholar 

  4. A. Chadha, D.N. Pandey, Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses. CUBO A Math. J. 17(1), 11–27 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Chen, X. Zhang, Y. Li, Existence of mild solutions to partial differential equations with non-instantaneous impulses. Electron. J. Differ. Equ. 241, 1–11 (2016)

    MATH  MathSciNet  Google Scholar 

  6. V. Colao, L. Muglia, H.-K. Xu, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay. Ann. Mate. (2015). doi:10.1007/s10231-015-0484-0

    Google Scholar 

  7. F.M. Dannan, S. Elaydi, Lipschitz stability of nonlinear systems of differential equations. J. Math. Anal. Appl. 113, 562–577 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649(2013)

    Google Scholar 

  9. E. Hernandez, M. Pierri, D. O’Regan, On abstract differential equatons with noninstantaneous impulses. Topological Methods Nonlinear Anal. 46(2), 1067–1088 (2015)

    MATH  MathSciNet  Google Scholar 

  10. S. Hristova, Qualitative Investigations and Approximate Methods for Impulsive Equations (Nova Science, New York, 2009)

    Google Scholar 

  11. V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, vol. I (Academic, New York, 1969)

    MATH  Google Scholar 

  12. V. Lakshmikantham, Y. Zhang, Strict practical stability of delay differential equation. Appl. Math. Comput. 118(2–3), 275–285 (2001)

    MATH  MathSciNet  Google Scholar 

  13. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)

    Book  MATH  Google Scholar 

  14. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Practical Stability of Nonlinear Systems (World Scientific, Singapore, 1990)

    Book  MATH  Google Scholar 

  15. K. Malar, A. Anguraj, Existence Results of Abstract Impulsive Integro-differential Systems with Measure of Non-compactness. J. Stat. Sci. Appl. 4(03–04), 108–117 (2016)

    Google Scholar 

  16. A.A. Martynyuk, Practical Stability of Motion (Naukova Dumka, Kiev, 1983) (in Russian)

    MATH  Google Scholar 

  17. C. Parthasarathy, Existence and Hyers-Ulam stability of nonlinear impulsive differential equations with nonlocal conditions. Electron. J. Math. Anal. Appl. 4(1), 106–115 (2016)

    MATH  MathSciNet  Google Scholar 

  18. M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

    MATH  MathSciNet  Google Scholar 

  19. M. Pierri, H.R. Henriquez, A. Prokopczyk, Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr. J. Math. 13(4), 1685–1708 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations (translated from the Russian). World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 14. (World Scientific, River Edge, NJ, 1995)

    Google Scholar 

  21. A. Sood, S.K. Srivastava, On stability of differential systems with noninstantaneous impulses. Math. Probl. Eng. 2015, Article ID 691687, 5 p. (2015). http://dx.doi.org/10.1155/2015/691687

  22. J. Wang, Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. (2017). http://dx.doi.org/10.1016/j.aml.2017.04.010

    MATH  Google Scholar 

  23. J.R. Wang, Z. Lin, A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability. Math. Meth. Appl. Sci. 38, 868–880 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Agarwal, R., Hristova, S., O’Regan, D. (2017). Non-instantaneous Impulses in Differential Equations. In: Non-Instantaneous Impulses in Differential Equations. Springer, Cham. https://doi.org/10.1007/978-3-319-66384-5_1

Download citation

Publish with us

Policies and ethics