Skip to main content

Does Your Landscape Mirror What You Eat? A Long-Term Socio-metabolic Analysis of a Local Food System in Vallès County (Spain, 1860–1956–1999)

  • Chapter
  • First Online:
Socio-Metabolic Perspectives on the Sustainability of Local Food Systems

Part of the book series: Human-Environment Interactions ((HUEN,volume 7))

  • 1107 Accesses

  • 18 Citations

Abstract

We assess the social metabolism of very different farm systems that existed in Vallès County , along the socio-ecological transition from organic to industrial agriculture at three different time points from 1860 to 1999. This allows us to analyze these contrasting food systems by focusing on four perspectives: agricultural labour productivity in relation to regional diets, the importance of multi-functionality in agroecosystems , the loss of landscape diversity and species richness , and the impacts of the current food regime at global and local scales . The socio-metabolic profiles obtained show that (1) winegrowing specialization co-existed with sustenance-oriented organic farming in 1860; (2) in 1956, the resumption of grain growing, combined with incipient use of industrial fertilizers, led to a more diverse agroecosystem where greater dependence on external inputs was countered by an increased productivity , providing more balanced diets and producing minor impacts on landscape ecology; (3) by 1999, a specialization in feedlots had disconnected local diets from a linear agro-industrial feed-meat chain based on huge feed imports from the Global South , leading to highly polarized socio-ecological impacts. Whereas unequal ecological exchange affects peasant communities and agroecosystems in feed-exporting countries, local landscapes suffer from the accumulation of dung waste poured into flatlands and from forest abandonment in steeper areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When referring to funds, we assume the distinction between stock and fund made by Georgescu-Roegen (1971). A biophysical fund provides a flow while either maintaining itself or being maintained (Faber et al. 1995), thus remaining as such within the time span adopted to account for a specific process (Mayumi 1991). Our flowchart of an agroecosystem differentiates among four principal funds: farming community, farmland, livestock, and associated biodiversity (Tello et al. 2016). For more details, see Marco et al. (forthcoming).

  2. 2.

    These indicators are derived from the Energy Return on Investment (EROI) that is calculated through energy analysis: External Inputs mean those flows coming from outside the agroecosystem boundaries; Biomass Reused is the share of NPPact devoted to maintain the livestock, or farmland soil fertility; Unharvested Biomass is the share of NPPact that remains available for the associated biodiversity; Final Produce is the total amount of NPPact that is available to be consumed by the farming community or that goes outside the agro-ecosystem. For a deeper definition of these concepts, see Tello et al. (2016). Once the flows have been calculated, the indicators are the following: \(NPPEROI = \frac{{NPP_{act} }}{BR + EI}\) where BR is the Biomass Reused and EI the External Inputs; \(AFEROI = \frac{FP}{BR + EI\,*\,UB}\) where FP is the Final Produce and UB the Unharvested Biomass.

  3. 3.

    The mathematical expression of the Shannon Index, modified for agrarian metabolism, is shown in Marull et al. (2016) as \(L = \left( { - \mathop \sum \nolimits_{i = 1}^{k} p_{i} { \log }_{k} p_{i} } \right)\left( {1 - p_{u} } \right)\) where p is the share of surface for each land use, k is the number of land covers not considering the urban ones, and pu the share of urban area over the total. On the other hand, the formula for the Effective Mesh Size, using the definition given by Jaeger (2000), is \(EMS = \frac{1}{{A_{t} }}\mathop \sum \nolimits_{i = 1}^{n} A_{i}^{2}\) being At the total surface, n the number of patches, and Ai the surface of each patch.

  4. 4.

    In Catalonia, vertical integration on pig feeding accounts for around 75% of the feedlots, and the greatest share measuring it in total weight. So it seems reasonable to estimate that its’ consumption of feed will have a similar pattern in international sources as the Spanish one (Observatori del Porcí 2009).

  5. 5.

    The most labour intensive fertilizing activities abandoned were burying fresh biomass and burning formiguers, a series of small charcoal kilns incorporated into the soil (Garrabou and Planas 1998; Olarieta et al. 2011).

  6. 6.

    This flow refers to that part of an agroecosystem’s products and services (from agriculture, livestock and forestry) that is destined to final use or consumption, as explained in Tello et al (2016).

  7. 7.

    The External Final EROI (EFEROI) is calculated as follows: \(EFEROI = \frac{FP}{EI}\) where FP is the Final Produce and EI the External Inputs (Tello et al. 2016); Biomass Reused is not included.

  8. 8.

    A good example could be the case of biomass imports of toxo (Ulex europaeus) for vineyard fertilization; these were imported in carts during the 19th century from the interior to the coast in Galiza (North-West of Iberia), as described in Corbacho-González (2015).

  9. 9.

    Again, this indicator emerges from the proposal of the so-called Energy Return of Investment (Tello et al. 2016). The Final EROI (FEROI) accounts for the energy efficiency of the whole agroecosystem and is calculated with the following formula: \(FEROI = \frac{FP}{BR + EI}\), where FP is the Final Product, BR the Biomass Reused, and EI the External Inputs.

  10. 10.

    We express livestock density with LU500/km2, meaning the number of equivalent animals of 500 kg per km2.

  11. 11.

    In turn, this entails an associated contradiction: Farmers are giving sodium bicarbonate to ruminants to prevent the acidity produced by the excessive consumption of grains (Ferre and Baucells 2009).

  12. 12.

    The isolated Catalan farms (masies) usually included the stable on the ground floor, where animals stayed during the night, while the chambers were on the upper floor, taking advantage of the animal heat that flowed from downstairs (Closa 2012).

  13. 13.

    It is important to remember that the first motivation of an agroecosystem is to provide biotic materials for a society. Yet the continuous extraction of this final produce involves an ecological disturbance that needs to be kept below a certain level compatible with the reproduction of the agroecosystem funds. Therefore, in order to have sustainable farm systems, production must be balanced to the ecological disturbance exerted through the investment made to keep the agroecosystem functioning.

  14. 14.

    We take the definition of metabolic rift from Schneider and McMichael (2010) as “a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism”.

References

  • Aguilera, E., Guzmán, G. I., Infante-Amate, J., et al. (2015). Embodied energy in agricultural inputs. Incorporating a historical perspective. DT-SEHA 1507.

    Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1–3), 19–31. doi:10.1016/S0167-8809(99)00028-6.

    Article  Google Scholar 

  • Arroyo, M. (2006). Los cambios en el proceso de producción y de distribución de gas en Barcelona y su hinterland (1930–1969). Entre el gas de hulla y el gas natural. Scripta Nova: Revista Electrónica de Geografía y Ciencias Sociales, 10, 29.

    Google Scholar 

  • Badia-Miró, M., Tello, E., Valls, F., et al. (2010). The grape phylloxera plague as a natural experiment: The unkeep of vineyards in Catalonia (Spain), 1858–1935. Australian Economic History Review, 50(1), 39–61. doi:10.1111/j.1467-8446.2009.00271.x.

    Article  Google Scholar 

  • Bhatt, B. P., & Sachan, M. S. (2004). Firewood consumption along an altitudinal gradient in mountain villages of India. Biomass and Bioenergy, 27(1), 69–75. doi:10.1016/j.biombioe.2003.10.004.

    Article  Google Scholar 

  • Bosch, J., Peris, S., Fonseca, C., et al. (2012). Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zoologica, 61(2), 138–151.

    Google Scholar 

  • Brookfield, H., & Stocking, M. (1999). Agrodiversity: Definition, description and design. Global Environmental Change, 9(2), 77–80. doi:10.1016/S0959-3780(99)00004-7.

    Article  Google Scholar 

  • Catacora-Vargas, G., Galeano, P., Agapito-Tenfen, S., et al. (2012). Soybean production in the Southern Cone of the Americas: Update on land and pesticide use. Cochabamba: Virmegraf.

    Google Scholar 

  • Cervera, T., Pino, J., Marull, J., et al. (2016). Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005), Land Use Policy (in press) . doi:10.1016/j.landusepol.2016.10.006.

  • Church, D. C. (1984). Alimentos y alimentacion del ganado. Tomo I. Hemisferio sur, Buenos Aires.

    Google Scholar 

  • Clark, B., & Foster, J. B. (2009). Ecological imperialism and the global metabolic rift unequal exchange and the guano/nitrates trade. International Journal of Comparative Sociology, 50(3–4), 311–334. doi:10.1177/0020715209105144.

    Article  Google Scholar 

  • Closa, E. (2012). Els valors artístics, arquitectònics i constructius de la masia. Barcelona.

    Google Scholar 

  • Colomé, J. (1996). L’especialització vitícola a la Catalunya del segle XIX. La comarca del Penedès. Dissertation, Universitat de Barcelona.

    Google Scholar 

  • Cooperativas Agro-alimentarias. (2010). Manual de ahorro y eficiencia energética del sector. Madrid.

    Google Scholar 

  • Corbacho-González, B. (2015). La transición socioecológica de una agricultura atlántica europea: El caso de la agricultura gallega, 1750–1900. Paper presented at the III Seminario de la Sociedad Española de Historia Agraria, Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, November 28, 2014.

    Google Scholar 

  • Cussó, X., & Garrabou, R. (2001). Alimentació i nutrició al Vallès Oriental en les darreres dècades del segle XIX. Lauro: revista del Museu de Granollers, 21, 26–34.

    Google Scholar 

  • Cussó, X., & Garrabou, R. (2007). La transición nutricional en la España contemporánea: Las variaciones en el consumo de pan, patatas y legumbres (1850–2000). Investigaciones de Historia Económica, 3(7), 69–100.

    Article  Google Scholar 

  • Cussó, X., & Garrabou, R. (2010). La globalización de la dieta en España en el siglo XX. Paper presented at the X Congreso Español de Sociología, Public University of Pamplona, June 1–3, 2010.

    Google Scholar 

  • Cussó, X., & Garrabou, R. (2012). Alimentacio i nutricio al Vallès Occidental. Un segle i mig de canvis i permanències: 1787–1936. Unitat d’Història Econòmica 2012_05.

    Google Scholar 

  • Cussó, X., Garrabou, R., Olarieta, J. R., et al. (2006). Balances energéticos y usos del suelo en la agricultura catalana: Una comparación entre mediados del siglo XIX y finales del siglo XX. Historia Agraria, 40, 471–500.

    Google Scholar 

  • DARP Departament d’Agricultura, Ramadería i Pesca. (1998). Dades bàsiques de l’agricultura, la ramaderia i la pesca a Catalunya. Gabinet Tècnic.

    Google Scholar 

  • de Boer, J., Helms, M., & Aiking, H. (2006). Protein consumption and sustainability: Diet diversity in EU-15. Ecological Economics, 59(3), 267–274. doi:10.1016/j.ecolecon.2005.10.011.

    Article  Google Scholar 

  • Diari Oficial de la Generalitat de Catalunya DOGC. (2009). DR 136/2009 Zones vulnerables en relació amb la contaminació de nitrats que procedeixen de fonts agràries i de gestió de les dejeccions ramaderes. Barcelona.

    Google Scholar 

  • Edelman, M., Weis, T., Baviskar, A., et al. (2014). Introduction: Critical perspectives on food sovereignty. The Journal of Peasant Studies, 41(6), 911–931. doi:10.1080/03066150.2014.963568.

    Article  Google Scholar 

  • Faber, M., Manstetten, R., & Proops, J. L. R. (1995). On the conceptual foundations of ecological economics: A teleological approach. Ecological Economics, 12(1), 41–54.

    Article  Google Scholar 

  • FAO. (1983). Métodos simples para fabricar carbón vegetal. Roma: Estudio Montes. FAO.

    Google Scholar 

  • Ferre, D., & Baucells, J. (2009). El bicarbonato sódico como aditivo insustituible en dietas de alta producción. http://dialnet.unirioja.es/servlet/articulo?codigo=2877973. Accessed November 15, 2016.

  • Flores, M., & Rodríguez-Ventura, M. (2014). Curso de nutricion animal. http://www.webs.ulpgc.es/nutranim/index.html. Accessed November 15, 2016.

  • Foley, J. A., Defries, R., Asner, G. P., et al. (2005). Global consequences of land use. Science, 309, 570–574. doi:10.1126/science.1111772.

    Article  CAS  PubMed  Google Scholar 

  • Foster, J. B., & Holleman, H. (2014). The theory of unequal ecological exchange: A Marx-Odum dialectic. The Journal of Peasant Studies, 41(2), 199–233. doi:10.1080/03066150.2014.889687.

    Article  Google Scholar 

  • Friedmann, H. (2016). Food regime analysis and agrarian questions: Widening the conversation. The Journal of Peasant Studies, 43(3), 671–692. doi:10.1080/03066150.2016.1146254.

    Article  Google Scholar 

  • Galán, E., Padró, R., Marco, I., et al. (2016). Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999). Ecological Modelling, 336, 13–25. doi:10.1016/j.ecolmodel.2016.05.012.

    Article  Google Scholar 

  • Galán, E., Tello, E., Cussó, X., et al. (2012). Métodos de fertilización y balance de nutrientes en la agricultura orgánica tradicional de la biorregion mediterránea: Cataluña (España) en la década de 1860. Historia Agraria, 65, 95–119.

    Google Scholar 

  • Gales, B., Kander, A., Malanima, P., et al. (2007). North versus South: Energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.

    Article  Google Scholar 

  • Garmendia, E., Urkidi, L., Arto, I., et al. (2016). Tracing the impacts of a northern open economy on the global environment. Ecological Economics, 126, 169–181. doi:10.1016/j.ecolecon.2016.02.011.

    Article  Google Scholar 

  • Garrabou, R., Cussó, X., & Tello, E. (2007). La persistència del conreu de cereals a la província de Barcelona a mitjan segle XIX. Estudis d’Història Agrària, 20, 165–221.

    Google Scholar 

  • Garrabou, R., & Planas, J. (1998). Estudio Agrícola del Vallès 1874. Granollers: Impremta de Granollers.

    Google Scholar 

  • Garrabou, R., & Tello, E. (2008). L’especialització vitícola catalana i la formació del mercat blader espanyol: Una nova interpretació a partir del cas de la província de Barcelona. Recerques, 57, 91–134.

    Google Scholar 

  • Georgescu-Roegen, N. (1971). The entropy law and the economic process. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Giampietro, M., Mayumi, K., & Ramos-Martin, J. (2008). Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An outline of rationale and theory. Barcelona: Elsevier.

    Google Scholar 

  • Giampietro, M., & Pimentel, D. (1990). Assessment of the energetics of human labor. Agriculture, Ecosystems & Environment, 32(3), 257–272.

    Article  Google Scholar 

  • Gliessmann, S. (1998). Agroecology: Ecological processes in sustainable agriculture. London: Lewis Publishers.

    Google Scholar 

  • González-Bernáldez, F. (1981). Ecología y paisaje. Madrid: Editorial Blume.

    Google Scholar 

  • González de Molina, M., García Ruiz, R., Guzmán, G. I., et al. (2010). Guideline for constructing nutrient balance in historical agricultural systems (and its application to three case-studies in southern Spain). DT-SEHA 1008.

    Google Scholar 

  • González de Molina, M., & Guzmán, G. I. (2006). Tras los pasos de la insustentabilidad agricultura y medio ambiente en perspectiva histórica (siglos XVIII–XX). Barcelona: Icaria.

    Google Scholar 

  • González de Molina, M., & Toledo, V. (2014). The social metabolism. New York: Springer.

    Book  Google Scholar 

  • Guzmán, G. I., Aguilera, E., Soto, D., et al. (2014). Metodología y conversores para el cálculo de la biomasa total producida en los agroecosistemas. DT-SEHA.

    Google Scholar 

  • Guzmán, G. I., & González de Molina, M. (2015). Energy efficiency in agrarian systems from an agroecological perspective. Agroecology and Sustainable Food Systems, 39(8), 924–952. doi:10.1080/21683565.2015.1053587.

    Article  Google Scholar 

  • Guzmán, G. I., González de Molina, M., & Alonso, A. M. (2011). The land cost of agrarian sustainability. An assessment. Land Use Policy, 28(4), 825–835. doi:10.1016/j.landusepol.2011.01.010.

    Article  Google Scholar 

  • Haberl, H. (2015). Competition for land: A sociometabolic perspective. Ecological Economics, 119, 424–431. doi:10.1016/j.ecolecon.2014.10.002.

    Article  Google Scholar 

  • Holland, J. M., Oaten, H., Moreby, S., et al. (2012). Agri-environment scheme enhancing ecosystem services: A demonstration of improved biological control in cereal crops. Agriculture, Ecosystems & Environment, 155, 147–152. doi:10.1016/j.agee.2012.04.014.

    Article  Google Scholar 

  • Infante Amate, J., Aguilera, E., & González de Molina, M. (2014). La gran transformacion del sector agroalimentario español. Un análisis desde la perspectiva energetica (1960–2010). DT-SEHA 1403.

    Google Scholar 

  • Infante Amate, J., & González de Molina, M. (2013). ‘Sustainable de-growth’ in agriculture and food: An agro-ecological perspective on Spain’s agri-food system (year 2000). Journal of Cleaner Production, 38, 27–35. doi:10.1016/j.jclepro.2011.03.018.

    Article  Google Scholar 

  • Infante Amate, J., & Parcerisas, L. (2013). Nuevas hipótesis sobre la especialización agraria en el Mediterráneo español. El olivar y la viña en perspectiva comparada (1850–1935). XIII Congreso de la Sociedad Española de Historia Agraria, Badajoz, 7–9 de Noviembre.

    Google Scholar 

  • Infante Amate, J., Soto, D., Aguilera, E., et al. (2015). The Spanish transition to industrial metabolism: Long-term material flow analysis (1860–2010). Journal of Industrial Ecology, 19(5), 866–876. doi:10.1111/jiec.12261.

    Article  Google Scholar 

  • Infante Amate, J., Villa, I., Aguilera, E., et al. (2016). The making of olive landscapes in the south of Spain. A history of continuous expansion and intensification. In M. Agnoletti & F. Emanueli (Eds.), Biocultural Diversity in Europe (pp. 157–179). New York: Springer.

    Chapter  Google Scholar 

  • Instituto Nacional de Estadística. (1969). Encuesta de presupuestos familiares (Marzo 1963–Marzo 1965) (pp. 37–58). Madrid.

    Google Scholar 

  • Instituto Nacional de Estadística. (1999). Censo agrario 1999. Madrid.

    Google Scholar 

  • Jaeger, J. A. G. (2000). Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landscape Ecology, 15(2), 115–130. doi:10.1023/A:1008129329289.

    Article  Google Scholar 

  • Jonason, D., Smith, H. G., Bengtsson, J., et al. (2013). Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera: Carabidae). Landscape Ecology, 28(3), 487–494. doi:10.1007/s10980-013-9848-2.

  • Kander, A., Warde, P., & Malanima, P. (2013). Power to the people: Energy in Europe over the last five centuries. Princeton: Princeton University Press.

    Google Scholar 

  • Kay, J., & Schneider, E. D. (1994). Embracing complexity, the challenge of the ecosystem approach. Alternatives, 20(3), 32–38. doi:10.1017/CBO9781107415324.004.

    Google Scholar 

  • Krausmann, F. (2004). Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Human Ecology, 32(6), 735–772. doi:10.1007/s10745-004-6834-y.

    Article  Google Scholar 

  • Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201.

    Article  CAS  PubMed  Google Scholar 

  • Lassaletta, L., Billen, G., Romero, E., et al. (2014). How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain (1961–2009). Regional Environmental Change, 14(2), 785–797. doi:10.1007/s10113-013-0536-1.

  • Leguizamón, A. (2016). Disappearing nature? Agribusiness, biotechnology and distance in Argentine soybean production. The Journal of Peasant Studies, 43(2), 313–330. doi:10.1080/03066150.2016.1140647.

    Article  Google Scholar 

  • Levers, C., Müller, D., Erb, K., et al. (2015). Archetypical patterns and trajectories of land systems in Europe. Regional Environmental Change, 1–18. http://doi.org/10.1007/s10113-015-0907-x.

  • Loreau, M., Mouquet, N., & Gonzalez, A. (2003). Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12765–12770. doi:10.1073/pnas.2235465100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotka, A. J. (1956). Elements of mathematical biology. New York: Dover Publications.

    Google Scholar 

  • Magdoff, F. (2013). Twenty-first-century land grabs: Accumulation by agricultural dispossession. Monthly Review, 65, 1–12.

    Article  Google Scholar 

  • Marco, I., Padró, R., Cattaneo, C., Caravacca, C., & Tello, E. (2017). From vineyards to feedlots: A fund-flow scanning of sociometabolic transition in the Vallès County (Catalonia) 1860–1956–1999. Regional Environmental Change. doi:10.1007/s10113-017-1172-y.

    Google Scholar 

  • Marrodán, M. D., Montero, P., & Cherkaoui, M. (2012). Transición Nutricional en España durante la historia reciente. Nutrición clínica y dietética hospitalaria, 32(2), 55–64.

    Google Scholar 

  • Martinez-Alier, J., Kallis, G., Veuthey, S., Walter, M., & Temper, L. (2010). Social metabolism, ecological distribution conflicts and valuation languages. Ecological Economics, 70(2), 153–158.

    Article  Google Scholar 

  • Marull, J., Font, C., Padró, R., et al. (2016). Energy-Landscape Integrated Analysis: A proposal for measuring complexity in internal agroecosystem processes (Barcelona Metropolitan Region, 1860–2000). Ecological Indicators, 66, 30–46. doi:10.1007/s13398-014-0173-7.2.

    Article  Google Scholar 

  • Marull, J., Otero, I., Stefanescu, C., et al. (2015). Exploring the links between forest transition and landscape changes in the Mediterranean. Does forest recovery really lead to better landscape quality? Agroforestry Systems, 89(4), 705–719. doi:10.1007/s10457-015-9808-8.

    Article  Google Scholar 

  • Marull, J., Pino, J., Tello, E., et al. (2010). Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy, 27(2), 497–510. doi:10.1016/j.landusepol.2009.07.004.

    Article  Google Scholar 

  • Marull, J., Tello, E., Wilcox, P. T., et al. (2014). Recovering the landscape history behind a Mediterranean edge environment (The Congost Valley, Catalonia, 1854–2005): The importance of agroforestry systems in biological conservation. Applied Geography, 54, 1–17. doi:10.1016/j.apgeog.2014.06.030.

    Article  Google Scholar 

  • Mayer, A., Schaffartzik, A., Haas, W., et al. (2015). Patterns of global biomass trade. Implications for food sovereignty and socio-environmental conflicts. EJOLT Reports, 20.

    Google Scholar 

  • Mayumi, K. (1991). Temporary emancipation from land: From the industrial revolution to the present time. Ecological Economics, 4, 35–56.

    Article  Google Scholar 

  • McMichael, P. (2016). Bernstein-McMichael-Friedmann dialogue on food regimes. Commentary: Food regime for thought. The Journal of Peasant Studies, 43(3), 648–670. doi:10.1080/03066150.2016.1143816.

    Article  Google Scholar 

  • Nicolau, R., & Pujol, J. (2005). El consumo de proteínas animales en Barcelona entre las décadas de 1830 y 1930: Evolución y factores condicionantes. Investigaciones de Historia Económica, 1(3), 101–134.

    Article  Google Scholar 

  • Observatori del Porcí. (2009). B3 Anàlisi simplificat de l’estructura de la cadena. Barcelona.

    Google Scholar 

  • Odum, E. P. (1993). Ecology and our endangered life-support systems. Massachussets: Sinauer Associates.

    Google Scholar 

  • Olarieta, J. R., Padró, R., Masip, G., et al. (2011). “Formiguers”, a historical system of soil fertilization (and biochar production?). Agriculture, Ecosystems & Environment, 140(1–2), 27–33. doi:10.1016/j.agee.2010.11.008.

    Article  Google Scholar 

  • Otero, I., Marull, J., Tello, E., et al. (2015). Land abandonment, landscape, and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecology & Society, 20(2), 7. http://dx.doi.org/10.5751/ES-07378-200207.

  • Penuelas, J., Sardans, J., Alcaniz, J. M., et al. (2009). Increased eutrophication and nutrient imbalances in the agricultural soil of NE Catalonia, Spain. Journal of Environmental Biology, 30(5), 841–846.

    CAS  PubMed  Google Scholar 

  • Pérez Martínez, P., & Monzón de Cáceres, A. (2008). Consumo de energía por el transporte en España y tendencias de emisión. Observatorio Medioambiental, 11, 127–147.

    Google Scholar 

  • Pimentel, D., & Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition, 78(3), 660S–663S.

    CAS  PubMed  Google Scholar 

  • Pollan, M. (2008). In defence of food: An eater’s manifesto. New York: Penguin.

    Google Scholar 

  • Popkin, B. M. (1993). Nutritional patterns and transitions. Population and Development Review, 19(1), 138–157.

    Article  Google Scholar 

  • Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1554), 2959–2971. doi:10.1098/rstb.2010.0143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy, A. K. N. (1981). An Indian village agricultural ecosystem case study of Ungra village. Part II. Discussion. Biomass, 1, 77–88. doi:10.1016/0144-4565(81)90016-0.

    Article  Google Scholar 

  • Sancho i Puig. (1885). Ahorra aunque sean lágrimas (pp. 113–116). Certamen del Ateneo de Villanueva i Geltrú.

    Google Scholar 

  • Schneider, M., McMichael, P. (2010) Deepening, and repairing, the metabolic rift. The Journal of Peasant Studies 37(3), 461–484. doi: 10.1080/03066150.2010.494371.

  • Sisquella, M., Lloveras, J., Álvaro, J., et al. (2004). Técnicas de cultivo para la producción de maíz, trigo y alfalfa en los regadíos del valle del Ebro. Lleida.

    Google Scholar 

  • Smil, V. (2000). Feeding the world: A challenge for the 21st century. Cambridge, MA: MIT Press.

    Google Scholar 

  • Smil, V. (2002). Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme and Microbial Technology, 30(3), 305–311. doi:10.1016/S0141-0229(01)00504-X.

    Article  CAS  Google Scholar 

  • Soroa, J. (1953). Prontuario del agricultor y el ganadero (8th ed.). Madrid: Dossta.

    Google Scholar 

  • Soto, D., Infante-Amate, J., Guzmán, G. I., et al. (2016). The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems. Ecological Economics, 128, 130–138. doi:10.1016/j.ecolecon.2016.04.017.

    Article  Google Scholar 

  • Teira-Esmatges, M. R., & Flotats, X. (2003). A method for livestock waste management planning in NE Spain. Waste Management, 23(10), 917–932. doi:10.1016/S0956-053X(03)00072-2.

  • Tello, E., Galán, E., Cunfer, G., et al. (2015). A proposal for a workable analysis of Energy Return On Investment (EROI) in agroecosystems. Part I : Analytical approach. Social Ecology Working Papers, 156.

    Google Scholar 

  • Tello, E., Galán, E., Sacristán, V., et al. (2016). Opening the black box of energy throughputs in agroecosystems: A decomposition analysis of final EROI into its internal and external returns (the Vallès county, Catalonia c. 1860 and 1999). Ecological Economics, 121, 160–174. doi:10.1016/j.ecolecon.2015.11.012.

    Article  Google Scholar 

  • Tello, E., Valldeperas, N., Ollés, A., et al. (2014). Looking backwards into a Mediterranean edge environment: Landscape changes in El Congost Valley (Catalonia), 1850–2005. Environment & History, 20(3), 347–384. doi:10.3197/096734014X14031694156402.

    Article  Google Scholar 

  • Temper, L., del Bene, D., & Martinez-Alier, J. (2015). Mapping the frontiers and front lines of global environmental justice: The EJAtlas. Journal of Political Ecology, 22, 255–278.

    Google Scholar 

  • Teubal, M. (2008). Soja y agronegocios en la Argentina: La crisis del modelo. Lavboratorio, 22, 5–7.

    Google Scholar 

  • Teuteberg, H. J., & Flandrin, J. L. (1999). The transformation of the European diet. In J. L. Flandrin, M. Montanari, & A. Sonnenfeld (Eds.), Food: A culinary history from antiquity to the present (Histoire de l’alimentation) (C. Botsford et al., Trans.) (pp. 442–456). New York: Columbia University Press (Original work published in 1996).

    Google Scholar 

  • Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515, 518–522. doi:10.1038/nature13959.

  • Tscharntke, T., Tylianakis, J. M., Rand, T. A., et al. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biological Reviews, 87(3), 661–685. doi:10.1111/j.1469-185X.2011.00216.x.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., et al. (1986). Human appropriation of the products of photosynthesis. BioScience, 36(6), 363–373.

    Article  Google Scholar 

  • Vranken, I., Baudry, J., Aubinet, M., et al. (2014). A review on the use of entropy in landscape ecology: heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology. doi:10.1007/s10980-014-0105-0.

    Google Scholar 

  • Weis, T. (2010). The accelerating biophysical contradictions of industrial capitalist agriculture. Journal of Agrarian Change, 10(3), 315–341. doi:10.1111/j.1471-0366.2010.00273.x.

    Article  Google Scholar 

  • Wijesinghe, L. C. A. de S. (1984). A sample study of biomass fuel consumption in Srilanka households. Biomass, 5, 261–82. doi:10.1016/0144-4565(84)90073-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roc Padró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padró, R., Marco, I., Cattaneo, C., Caravaca, J., Tello, E. (2017). Does Your Landscape Mirror What You Eat? A Long-Term Socio-metabolic Analysis of a Local Food System in Vallès County (Spain, 1860–1956–1999). In: Fraňková, E., Haas, W., Singh, S. (eds) Socio-Metabolic Perspectives on the Sustainability of Local Food Systems. Human-Environment Interactions, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69236-4_5

Download citation

Publish with us

Policies and ethics