Skip to main content

Silicon Sensors for Experiments in High Energy Physics

  • Conference paper
  • First Online:
XXII DAE High Energy Physics Symposium

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 203))

  • 131 Accesses

Abstract

With increasing luminosity of accelerators for experiments in high energy physics the demands on the detectors increase as well. Especially tracking and vertexing detectors made of silicon sensors close to the interaction point need to be equipped with more radiation hard devices. This article introduces the different types of silicon sensors, describes measures to increase radiation hardness and provides an overview of the present upgrade choices for experiments in high energy physics.

Alexander Dierlamm for the CMS Collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://hilumilhc.web.cern.ch/about/hl-lhc-project

  2. M. Moll, Ph.D. thesis, DESY-THESIS-1999-040 (1999)

    Google Scholar 

  3. T.R. Oldham, F.B. McLean, IEEE Trans. Nucl. Sci. 50, 483–499 (2003)

    Google Scholar 

  4. J. Zhang, Ph.D. thesis, DESY-THESIS-2013-018 (2013)

    Google Scholar 

  5. M. Printz, NIM A 831, 38–43 (2016) ; R. Dalal et al., JINST 9, P04007 (2014)

    Google Scholar 

  6. CMS Collaboration, CMS-DP-2015-022, http://cds.cern.ch/record/2039908

  7. B. Hyams et al., NIM Phys. Res. 205, 99105 (1983)

    Google Scholar 

  8. G. Casse, NIM A 612, 464–469 (2010)

    Google Scholar 

  9. D. Contardo et al., CERN-LHCC-2015-010

    Google Scholar 

  10. ATLAS Collaboration, CERN-LHCC-2012-022

    Google Scholar 

  11. A.-M. Magnan, JINST 12, C01042 (2017)

    Google Scholar 

  12. LHCb Tracker Upgrade Technical Design Report, CERN-LHCC-2014-001

    Google Scholar 

  13. S.I. Parker et al., NIM A 395, 328–343 (1997)

    Google Scholar 

  14. https://www.fbk.eu; http://www.imb-cnm.csic.es; https://www.sintef.no/en/

  15. The ATLAS IBL Collaboration, JINST 7, P11010 (2012)

    Google Scholar 

  16. M. Backhaus, NIM A 831, 65–70 (2016)

    Google Scholar 

  17. P. Yang et al., JINST 10, C03030 (2015)

    Google Scholar 

  18. G. Contin et al., JINST 10, C03026 (2015)

    Google Scholar 

  19. I. Perić et al., NIM A 731, 131–136 (2013)

    Google Scholar 

  20. The Mu3e Experiment, http://www.psi.ch/mu3e/

  21. H. Augustin et al., JINST 11, C11029 (2016)

    Google Scholar 

  22. S. Terzo et al., JINST 9, C12029 (2014)

    Google Scholar 

  23. N. Savic et al., NIM A 845, 154–158 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dierlamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dierlamm, A. (2018). Silicon Sensors for Experiments in High Energy Physics. In: Naimuddin, M. (eds) XXII DAE High Energy Physics Symposium . Springer Proceedings in Physics, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-319-73171-1_2

Download citation

Publish with us

Policies and ethics