Abstract
Spatial discretization with NURBS meshes is increasingly being used in computational analysis, including computational flow analysis with complex geometries. In flow analysis, compared to standard discretization methods, isogeometric discretization provides more accurate representation of the solid surfaces and increased accuracy in the flow solution. The Space-Time Computational Analysis (STCA), where the core method is the ST Variational Multiscale method, is increasingly relying on the ST Isogeometric Analysis (ST-IGA) as one of its key components, quite often also with IGA basis functions in time. The ST Slip Interface (ST-SI) and ST Topology Change methods are two other key components of the STCA, and complementary nature of all these ST methods makes the STCA powerful and practical. To make the ST-IGA use, and in a wider context the IGA use, even more practical in computational flow analysis with complex geometries, NURBS volume mesh generation needs to be easier and more automated. To that end, we present a general-purpose NURBS mesh generation method. The method is based on multi-block-structured mesh generation with existing techniques, projection of that mesh to a NURBS mesh made of patches that correspond to the blocks, and recovery of the original model surfaces to the extent they are suitable for accurate and robust fluid mechanics computations. It is expected to retain the refinement distribution and element quality of the multi-block-structured mesh that we start with. The flexibility of discretization with the general-purpose mesh generation is supplemented with the ST-SI method, which allows, without loss of accuracy, C−1 continuity between NURBS patches and thus removes the matching requirement between the patches. We present mesh-quality performance studies for 2D and 3D meshes, including those for complex models, and test computation for a turbocharger turbine and exhaust manifold. These demonstrate that the general-purpose mesh generation method proposed makes the IGA use in computational flow analysis even more practical.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method”, Computers & Fluids, 158 (2017) 189–200, https://doi.org/10.1016/j.compfluid.2017.04.017.
T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135–4195.
Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.
Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.
Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.
T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1–44, https://doi.org/10.1016/S0065-2156(08)70153-4.
T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, https://doi.org/10.1002/fld.505.
T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, https://doi.org/10.1002/fld.1430.
K. Takizawa and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics, 48 (2011) 247–267, https://doi.org/10.1007/s00466-011-0571-z.
K. Takizawa and T.E. Tezduyar, “Space–time fluid–structure interaction methods”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230001, https://doi.org/10.1142/S0218202512300013.
K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, https://doi.org/10.1115/1.4005073.
K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743–760, https://doi.org/10.1007/s00466-012-0759-x.
K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, https://doi.org/10.1142/S0218202513400058.
K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1–15, https://doi.org/10.1007/s00466-013-0888-x.
K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time interface-tracking with topology change (ST-TC)”, Computational Mechanics, 54 (2014) 955–971, https://doi.org/10.1007/s00466-013-0935-7.
K. Takizawa, “Computational engineering analysis with the new-generation space–time methods”, Computational Mechanics, 54 (2014) 193–211, https://doi.org/10.1007/s00466-014-0999-z.
K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time fluid mechanics computation of heart valve models”, Computational Mechanics, 54 (2014) 973–986, https://doi.org/10.1007/s00466-014-1046-9.
K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping”, Computational Mechanics, 55 (2015) 1131–1141, https://doi.org/10.1007/s00466-014-1095-0.
K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227–2255, https://doi.org/10.1142/S0218202515400072.
K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406, https://doi.org/10.1142/S0218202515400126.
K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermo-fluid analysis of a disk brake”, Computational Mechanics, 57 (2016) 965–977, https://doi.org/10.1007/s00466-016-1272-4.
K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA)”, Computers & Fluids, 142 (2017) 15–20, https://doi.org/10.1016/j.compfluid.2016.02.021.
K. Takizawa, T.E. Tezduyar, S. Asada, and T. Kuraishi, “Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC)”, Computers & Fluids, 141 (2016) 124–134, https://doi.org/10.1016/j.compfluid.2016.05.006.
K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods”, Computers & Fluids, 158 (2017) 176–188, https://doi.org/10.1016/j.compfluid.2016.11.012.
A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.
T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.
T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.
Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.
Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.
T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.
K. Takizawa, Y. Bazilevs, and T.E. Tezduyar, “Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling”, Archives of Computational Methods in Engineering, 19 (2012) 171–225, https://doi.org/10.1007/s11831-012-9071-3.
Y. Bazilevs, M.-C. Hsu, K. Takizawa, and T.E. Tezduyar, “ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230002, https://doi.org/10.1142/S0218202512300025.
Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.
Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Challenges and directions in computational fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 215–221, https://doi.org/10.1142/S0218202513400010.
Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2217–2226, https://doi.org/10.1142/S0218202515020029.
V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, https://doi.org/10.1016/S0045-7825(00)00204-8.
Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.
Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.
M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.
M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.
M.E. Moghadam, Y. Bazilevs, T.-Y. Hsia, I.E. Vignon-Clementel, A.L. Marsden, and M. of Congenital Hearts Alliance (MOCHA), “A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations”, Computational Mechanics, 48 (2011) 277–291, https://doi.org/10.1007/s00466-011-0599-0.
Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.
Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.
M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.
Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.
M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.
A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.
Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre, “Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods”, Archives of Computational Methods in Engineering, 21 (2014) 359–398, https://doi.org/10.1007/s11831-014-9119-7.
Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines”, International Journal for Numerical Methods in Engineering, 102 (2015) 766–783, https://doi.org/10.1002/nme.4738.
A. Korobenko, M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Aerodynamic simulation of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2013) 021011, https://doi.org/10.1115/1.4024415.
Y. Bazilevs, A. Korobenko, X. Deng, J. Yan, M. Kinzel, and J.O. Dabiri, “FSI modeling of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2014) 081006, https://doi.org/10.1115/1.4027466.
J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs, “Computational free-surface fluid–structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141 (2016) 155–174, https://doi.org/10.1016/j.compfluid.2016.03.008.
Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S.M.I. Gohari, and S. Sarkar, “ALE–VMS formulation for stratified turbulent incompressible flows with applications”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2349–2375, https://doi.org/10.1142/S0218202515400114.
Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.
Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.
Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.
Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.
Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.
M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.
C.C. Long, A.L. Marsden, and Y. Bazilevs, “Fluid–structure interaction simulation of pulsatile ventricular assist devices”, Computational Mechanics, 52 (2013) 971–981, https://doi.org/10.1007/s00466-013-0858-3.
C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs, “Computation of residence time in the simulation of pulsatile ventricular assist devices”, Computational Mechanics, 54 (2014) 911–919, https://doi.org/10.1007/s00466-013-0931-y.
C.C. Long, A.L. Marsden, and Y. Bazilevs, “Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk”, Computational Mechanics, 54 (2014) 921–932, https://doi.org/10.1007/s00466-013-0967-z.
M.-C. Hsu, D. Kamensky, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation”, Computational Mechanics, 54 (2014) 1055–1071, https://doi.org/10.1007/s00466-014-1059-4.
M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.
D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.
I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.
I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.
C. Wang, M.C.H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs, “Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis”, Computers and Fluids, 142 (2017) 3–14, https://doi.org/10.1016/j.compfluid.2015.12.004.
M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://doi.org/10.1016/j.cma.2016.09.032.
J. Yan, X. Deng, A. Korobenko, and Y. Bazilevs, “Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines”, Computers and Fluids, 158 (2017) 157–166, https://doi.org/10.1016/j.compfluid.2016.06.016.
B. Augier, J. Yan, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “Experimental and numerical FSI study of compliant hydrofoils”, Computational Mechanics, 55 (2015) 1079–1090, https://doi.org/10.1007/s00466-014-1090-5.
J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration”, Computers and Fluids, 141 (2016) 201–211, https://doi.org/10.1016/j.compfluid.2015.07.013.
K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125–169, https://doi.org/10.1007/s11831-012-9070-4.
K. Takizawa, M. Fritze, D. Montes, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity”, Computational Mechanics, 50 (2012) 835–854, https://doi.org/10.1007/s00466-012-0761-3.
K. Takizawa, T.E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher, “Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity”, Computational Mechanics, 52 (2013) 1351–1364, https://doi.org/10.1007/s00466-013-0880-5.
K. Takizawa, T.E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel, “FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes”, Computational Mechanics, 54 (2014) 1203–1220, https://doi.org/10.1007/s00466-014-1052-y.
K. Takizawa, T.E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel, “Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes”, Computational Mechanics, 54 (2014) 1461–1476, https://doi.org/10.1007/s00466-014-1069-2.
K. Takizawa, T.E. Tezduyar, C. Boswell, Y. Tsutsui, and K. Montel, “Special methods for aerodynamic-moment calculations from parachute FSI modeling”, Computational Mechanics, 55 (2015) 1059–1069, https://doi.org/10.1007/s00466-014-1074-5.
K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the Orion spacecraft drogue parachutes”, Computational Mechanics, 55 (2015) 1167–1179, https://doi.org/10.1007/s00466-014-1108-z.
K. Takizawa, B. Henicke, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 333–344, https://doi.org/10.1007/s00466-011-0589-2.
K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647–657, https://doi.org/10.1007/s00466-011-0614-5.
K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space–time methods”, Archives of Computational Methods in Engineering, 21 (2014) 481–508, https://doi.org/10.1007/s11831-014-9113-0.
K. Takizawa, N. Kostov, A. Puntel, B. Henicke, and T.E. Tezduyar, “Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle”, Computational Mechanics, 50 (2012) 761–778, https://doi.org/10.1007/s00466-012-0758-y.
K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Computer modeling techniques for flapping-wing aerodynamics of a locust”, Computers & Fluids, 85 (2013) 125–134, https://doi.org/10.1016/j.compfluid.2012.11.008.
K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213–233, https://doi.org/10.1007/s00466-014-0980-x.
K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50 (2012) 675–686, https://doi.org/10.1007/s00466-012-0760-4.
K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061–1073, https://doi.org/10.1007/s00466-012-0790-y.
K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt, “ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling”, Mathematical Models and Methods in Applied Sciences, 24 (2014) 2437–2486, https://doi.org/10.1142/S0218202514500250.
H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, and T. Ueda, “FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta”, Computational Mechanics, 54 (2014) 1035–1045, https://doi.org/10.1007/s00466-014-1017-1.
K. Takizawa, D. Montes, S. McIntyre, and T.E. Tezduyar, “Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 223–248, https://doi.org/10.1142/s0218202513400022.
K. Takizawa, T.E. Tezduyar, and H. Hattori, “Computational analysis of flow-driven string dynamics in turbomachinery”, Computers & Fluids, 142 (2017) 109–117, https://doi.org/10.1016/j.compfluid.2016.02.019.
K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200, https://doi.org/10.1016/j.compfluid.2016.05.027.
K. Takizawa, T.E. Tezduyar, and T. Kanai, “Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity”, Mathematical Models and Methods in Applied Sciences, 27 (2017) 771–806, https://doi.org/10.1142/S0218202517500166.
T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157–177, https://doi.org/10.1016/0045-7825(94)00082-4.
K. Takizawa and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91–99, https://doi.org/10.1007/s00466-013-0895-y.
T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49–71, https://doi.org/10.1016/0045-7825(86)90023-X.
G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397–422, https://doi.org/10.1016/0045-7825(93)90033-T.
T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces”, Computers & Fluids, 36 (2007) 191–206, https://doi.org/10.1016/j.compfluid.2005.02.011.
T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, https://doi.org/10.1016/j.cma.2005.05.032.
T.E. Tezduyar and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing”, Computers & Fluids, 36 (2007) 147–159, https://doi.org/10.1016/j.compfluid.2005.07.009.
T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing”, Computational Mechanics, 38 (2006) 469–481, https://doi.org/10.1007/s00466-005-0025-6.
T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective stabilization procedure (EDSSP)”, Computational Mechanics, 38 (2006) 456–468, https://doi.org/10.1007/s00466-006-0056-7.
A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation”, Computational Mechanics, 38 (2006) 356–364, https://doi.org/10.1007/s00466-006-0045-x.
F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)”, Computers & Fluids, 36 (2007) 121–126, https://doi.org/10.1016/j.compfluid.2005.07.004.
T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formulations for incompressible flows with thermal coupling”, International Journal for Numerical Methods in Fluids, 57 (2008) 1189–1209, https://doi.org/10.1002/fld.1743.
F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing”, International Journal for Numerical Methods in Fluids, 54 (2007) 695–706, https://doi.org/10.1002/fld.1447.
Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, https://doi.org/10.1002/fld.1484.
A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://doi.org/10.1115/1.3062967.
F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, https://doi.org/10.1115/1.3057496.
A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors”, Computational Mechanics, 46 (2010) 159–167, https://doi.org/10.1007/s00466-009-0441-0.
M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, https://doi.org/10.1016/j.cma.2009.06.019.
A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite element computation of NOx emission in aero-engine combustors”, International Journal for Numerical Methods in Fluids, 65 (2011) 254–270, https://doi.org/10.1002/fld.2451.
A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique”, Journal of Applied Mechanics, 79 (2012) 010910, https://doi.org/10.1115/1.4005060.
A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations”, Computational Mechanics, 50 (2012) 695–705, https://doi.org/10.1007/s00466-012-0789-4.
P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems”, Computational Mechanics, 51 (2013) 171–185, https://doi.org/10.1007/s00466-012-0712-z.
A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar, and P. Venturini, “A variational multiscale method for particle-cloud tracking in turbomachinery flows”, Computational Mechanics, 54 (2014) 1191–1202, https://doi.org/10.1007/s00466-014-1050-0.
F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, and T.E. Tezduyar, “Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing”, Computational Mechanics, 55 (2015) 1201–1209, https://doi.org/10.1007/s00466-015-1160-3.
M.F. Wheeler, “An elliptic collocation-finite element method with interior penalties”, SIAM Journal on Numerical Analysis, 15 (1978) 152–161.
P. Houston, C. Schwab, and E. Suli, “Discontinuous hp-finite element methods for advection-diffusion reaction problems”, SIAM Journal on Numerical Analysis, 39 (2002) 2133–2163.
Acknowledgements
This work was supported (first and second authors) in part by JST-CREST; Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement. This work was also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Otoguro, Y., Takizawa, K., Tezduyar, T.E. (2018). A General-Purpose NURBS Mesh Generation Method for Complex Geometries. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-96469-0_10
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-96468-3
Online ISBN: 978-3-319-96469-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)