Skip to main content

Moduli Spaces

  • Chapter
Rational Points

Part of the book series: Aspects of Mathematics ((ASMA,volume 6))

  • 559 Accesses

Abstract

The purpose of this chapter is to list the necessary basic facts from the theory of moduli spaces and their compactifications. Giving complete proofs would require a book, and therefore we usually only describe what is going on. Precise details may be found in the appropriate books, and this survey might be useful as an introduction to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. M. Artin: Algebraization of formal moduli I in: Global Analysis Princeton Univ. Press, Princeton 1969.

    Google Scholar 

  2. A. Ash. D. Mumford, M. Rapoport, Y. Tai: Smooth compactification of locally symmetric varieties Math. Sci. Press, Brookline (1975).

    Google Scholar 

  3. W.L. Baily, A. Borel: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. 84(1966), 442–528.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Deligne, D. Mumford: The irreducibility of the space of curves of a given genus Publ. math. IHES 36(1969), 75–110.

    MATH  MathSciNet  Google Scholar 

  5. D. Mumford: Geometric Invariant Theory Springer Verlag, Berlin 1965.

    MATH  Google Scholar 

  6. D. Mumford: Stability of projective varieties Ens. Math. 23(1977), 39–100.

    MATH  MathSciNet  Google Scholar 

  7. D. Mumford: Hirzebruch’s proportionality theorem in the non-compact case Inven. math. 42(1977), 239–272.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Faltings, G. (1992). Moduli Spaces. In: Rational Points. Aspects of Mathematics, vol 6. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80340-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80340-5_1

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-80342-9

  • Online ISBN: 978-3-322-80340-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics