Skip to main content
  • 537 Accesses

  • 1 Citation

Abstract

Methods for determining the heat content E* /A of hot nuclei formed in energetic nuclear reactions are discussed. The primary factors involved in converting raw data into thermal physics distributions include: 1) design of the detector array, 2) constraints imposed by the physics of the reaction mechanism, and 3) assumptions involved in converting the filtered data into E* /A. The two primary sources of uncertainty in the calorimetry are the elimination of nonequilibrium emissions from the event components and accounting for the contribution of neutron emission to the excitation energy sum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  2. R.T. de Souza et al., contribution VI.1, this topical issue.

    Google Scholar 

  3. L. Pienkowski et al., Phys. Lett. B 336, 147 (1994).

    Article  ADS  Google Scholar 

  4. F. Goldenbaum et al., Phys. Rev. Lett. 77, 1230 (1996).

    Article  ADS  Google Scholar 

  5. K. Kwiatkowski et al., Phys. Lett. B 433, 21 (1998).

    ADS  Google Scholar 

  6. T. Lefort et al., Phys. Rev. C 64, 064603 (2001).

    Article  ADS  Google Scholar 

  7. V. Radionov et al., Nucl. Phys. A 700, 457 (2002).

    Article  ADS  Google Scholar 

  8. J.A. Hauger et al., Phys. Rev. Lett. 62, 024616 (2000).

    ADS  Google Scholar 

  9. J.A. Hauger et al., Phys. Rev. C 57, 764 (1998).

    Article  ADS  Google Scholar 

  10. A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996).

    Article  ADS  Google Scholar 

  11. J.C. Steckmeyer et al., Nucl. Phys. A 686, 537 (2001); E. Vient et al., Nucl. Phys. A 700, 555 (2002).

    Article  ADS  Google Scholar 

  12. R. Wada et al., Phys. Rev. C 55, 227 (1997); K. Hagel et al., Phys. Rev. C 62, 034607 (2000).

    Article  ADS  Google Scholar 

  13. Y.G. Ma et al., Nucl. Phys. A 749, 106 (2005).

    Article  ADS  Google Scholar 

  14. CHIMERA Collaboration (E. Galichet), private communication.

    Google Scholar 

  15. L. Beaulieu et al., Phys. Rev. Lett. 77, 462 (1996).

    Article  ADS  Google Scholar 

  16. B. Djerroud et al., Phys. Rev. C 64, 034603 (2001).

    Article  ADS  Google Scholar 

  17. M. D’Agostino et al., Nucl. Phys. A 650, 329 (1999).

    Article  ADS  Google Scholar 

  18. M. D’Agostino et al., Phys. Lett. B 473, 219 (2000).

    Article  ADS  Google Scholar 

  19. M. D’Agostino et al., Nucl. Phys. A 699, 795 (2002).

    Article  ADS  Google Scholar 

  20. T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000).

    Article  ADS  Google Scholar 

  21. K.B. Morley et al., Phys. Rev. C 54, 737 (1996).

    Article  ADS  Google Scholar 

  22. J. Łukasik et al., Phys. Lett. B 566, 76 (2003).

    Article  ADS  Google Scholar 

  23. ALADiN Collaboration (W. Trautmann), private communication.

    Google Scholar 

  24. M.F. Rivet et al., Phys. Lett. B 423, 217 (1998); P. Desquelles et al., Phys. Rev. C 62, 024614 (2000).

    ADS  Google Scholar 

  25. Y. Perier et al., Nucl. Instrum. Methods A 413, 32 (1998).

    Article  Google Scholar 

  26. J. Toke et al., Phys. Rev. Lett. 75, 2920 (1995).

    Article  ADS  Google Scholar 

  27. A. Botvina, A.S. Ilijinov, I.N. Mishustin, Nucl. Phys. A 507, 649 (1990).

    Article  ADS  Google Scholar 

  28. D.H.E. Gross, Rep. Prog. Phys. 53, 605 (1990).

    Article  ADS  Google Scholar 

  29. R. Charity et al., Nucl. Phys. A 483, 371 (1998).

    Article  ADS  Google Scholar 

  30. D. Durand, Nucl. Phys. A 541, 266 (1992).

    Article  ADS  Google Scholar 

  31. T. Lefort et al., Phys. Rev. C 62, 031604R (2000).

    Article  ADS  Google Scholar 

  32. S.P. Avdeyev et al., Nucl. Phys. A 709, 392 (2002).

    Article  ADS  Google Scholar 

  33. R.E.L. Green et al., Phys. Rev. C 29, 1806 (1984).

    Article  ADS  Google Scholar 

  34. J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002); see also A. Kelić et al., contribution V.2, this topical issue.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Viola, V.E., Bougault, R. (2006). Calorimetry. In: Chomaz, P., Gulminelli, F., Trautmann, W., Yennello, S.J. (eds) Dynamics and Thermodynamics with Nuclear Degrees of Freedom. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46496-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46496-9_17

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46494-5

  • Online ISBN: 978-3-540-46496-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics