Skip to main content

Contrast Medium-Induced Nephropathy

  • Chapter
Contrast Media

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1131 Accesses

Acute renal failure is a sudden and rapid deterioration in renal function which results in the failure of the kidney to excrete nitrogenous waste products and to maintain fluid and electrolyte homeostasis. It may be a result of intravascular administration of radiographic and magnetic resonance (MR) contrast media (see also Chap. 22). Despite increased awareness, contrast medium-induced nephropathy remains the third most common cause of hospital-acquired kidney failure, and was responsible for 11% of cases in 2002 and 12% in 1979 (Hou et al. 1983; Nash et al. 2002). The mortality rate in those cases was 14%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allaqaband S, Tumuluri R, Malik AM et al (2002) Prospective randomized study of N-acetylcysteine, fenoldopam and saline for prevention of radiocontrast-induced nephropathy. Catheter Cardiovasc Intervent 57:279–283

    Article  Google Scholar 

  • Almén T, Frennby B, Sterner G (1999) Determination of glomerular filtration rate (GFR) with contrast media. In: Thomsen HS, Muller RN, Mattrey RF (eds) Trends in contrast media. Springer, Berlin, pp 81–94

    Google Scholar 

  • Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ (2004) Prevention of contrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. Am J Kidney Dis 43:1–9

    Article  PubMed  CAS  Google Scholar 

  • Andrew E, Berg KJ (2004) Nephrotoxic effects of X-ray contrast media. J Toxicol Clin Toxicol 42:325–332

    Article  PubMed  CAS  Google Scholar 

  • Asif A, Epstein M (2004) Prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 44:12–24

    Article  PubMed  CAS  Google Scholar 

  • Aspelin P, Aubry P, Fransson S-G et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. N Engl. J Med 348:491–499

    Article  PubMed  CAS  Google Scholar 

  • Atkins JL (1986) Effect of sodium bicarbonate preloading on ischemic renal failure. Nephron 44: 70–76

    Article  PubMed  CAS  Google Scholar 

  • Bader BD, Berger ED, Heede MB et al (2004) What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol 62:1–7

    PubMed  CAS  Google Scholar 

  • Bagshaw SM, Ghali WA (2004) Acetylcysteine for prevention of contrast induced nephropathy after intravascular angiography: a systematic review and meta-analysis. BMC Med 2:38

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw SM, Ghali WM (2005) Theophylline for prevention of radiocontrast nephropathy: a systematic review and metaanalysis. Arch Intern Med 176:1087–1093

    Article  Google Scholar 

  • Bagshaw SM, McAlister FA, Manns BJ, Gahli WA (2006) Acetylcysteine in the prevention of contrast-induced nephropathy. Arch Intern Med 166:161–166

    Article  PubMed  CAS  Google Scholar 

  • Bakris GL, Lass N, Habaer AO et al (1990) Radiocontrast medium induced declines in renal function. A role for oxygen free radicals. Am J Physiol 175:57–60

    CAS  Google Scholar 

  • Band RA, Gaieski DF, Mills AM et al (2007) Discordance between serum creatinine and creatinine clearance for identification of ED patients with abdominal pain at risk for contrast induced nephropathy. Am J Emerg Med 25:268–272

    Article  PubMed  Google Scholar 

  • Barrett BJ, Parfrey PS (2006) Preventing nephropathy induced by contrast medium. N Engl J Med 354:379–386

    Article  PubMed  CAS  Google Scholar 

  • Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double blind comparison of iodixanol and iopamidol. Invest Radiol 41:815–821

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew BA, Harjai KJ, Dukkipati S et al (2004) Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 93:1515–1519

    Article  PubMed  Google Scholar 

  • Benigni A, Remuzzi G (1999) Endothelin antagonists. Lancet 353:133–138

    Article  PubMed  CAS  Google Scholar 

  • Berns AS (1989) Nephrotoxicity of contrast media. Kidney Int 36:730–740

    Article  PubMed  CAS  Google Scholar 

  • Bettmann MA (2005) Contrast medium-induced nephropathy: critical review of the existing clinical evidence Nephrol Dial Transplant 20(Suppl 1):i12–i17

    Google Scholar 

  • Biondi-Zoccai GG, Lotrionte M, Abbate A et al (2006) Compliance with QUOROM and quality of reporting over overlapping meta-analysis on the role of acetylcysteine in the prevention of contrast associated nephropathy: case study Br Med J 332:202–209

    Google Scholar 

  • Blaufox MD, Aurell M, Bubeck B et al (1996) Report of the Radionuclide in Nephrourology Committee on renal clearance. J Nucl Med 37:1883–1890

    PubMed  CAS  Google Scholar 

  • Bostrom AG, Kronenberg F, Ritz E (2002) Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J Am Soc Nephrol 13:2140–2144

    Article  CAS  Google Scholar 

  • Briguori C, Colombo A, Airoldi F et al (2004a) N-acetylcysteine versus fenoldopam mesylate to prevent contrast agentassociated nephrotoxicity. J Am Coll Cardiol 44:762–765

    Article  CAS  Google Scholar 

  • Briguori C, Colombo A, Violante A et al (2004b) Standard vs. double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. Eur Heart J 25:206–211

    Article  CAS  Google Scholar 

  • Briguori C, Colombo A, Airoldi F et al (2006) Nephrotoxicity of low-osmolality versus iso-osmolality contrast agents: impact of N-acetylcysteine. Kidney Int 68:2250–2255

    Article  Google Scholar 

  • Briguori C, Airoldi F, D’Andrea D et al (2007) Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 115:1211–1217

    PubMed  CAS  Google Scholar 

  • Carraro M, Mancini W, Aretro M et al (1996) Dose effect of nitrendipine on urinary enzymes and microproteins following nonionic radiocontrast administration. Nephrol Dial Transplant 11:444–448

    PubMed  CAS  Google Scholar 

  • Carraro M, Malahan F, Antonione R et al (1998) Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate insufficiency: a double blind, randomized trail. Eur Radiol 8:144–147

    Article  PubMed  CAS  Google Scholar 

  • Cavusoglu E, Chabra S, Marmur JD, Kini A, Sharma SK (2004) The prevention of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Minerva Cardioangio 52:419–432

    CAS  Google Scholar 

  • Chalmers N, Jackson RW (1999) Comparison of iodixanol and iohexol in renal impairment. Br J Radiol 72:701–703

    PubMed  CAS  Google Scholar 

  • Cheruvu B, Henning K, Mulligan J et al (2007) Iodixanol: risk of seubquent contrast nephropathy in cancer patients with underlying renal insufficiency undergoing diagnostic computed tomography examinations. J Comput Assist Tomogr 31:493–498

    Article  PubMed  Google Scholar 

  • Choyke PL, Cady K, DePollar SL, Austin H (1998) Determination of serum creatinine prior to iodinated contrast media: is it needed in all patients? Tech Urol 4:65–69

    PubMed  CAS  Google Scholar 

  • Clavijo LC, Pinto TL, Kuchulakanti PK et al (2006) Effect of a rapid intraarterial infusion of dextrose 5% prior to coronary angiography on frequency of contrast-induced nephropathy in high-risk patients. Am J Cardiol 97:981–983

    Article  PubMed  CAS  Google Scholar 

  • Cockroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  Google Scholar 

  • Couchoud C, Pozet N, Labeeuw M, Pouteil-Noble C (1999) Screening early renal failure: cut-off values for serum creatinine as an indicator of renal impairment. Kidney Int 55:1878–1884

    Article  PubMed  CAS  Google Scholar 

  • Curham GC (2003) Prevention of contrast nephropathy. JAMA 289:606–608

    Article  Google Scholar 

  • Dussol B, Morange S, Loundoun A et al (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21:2120–2126

    Article  PubMed  CAS  Google Scholar 

  • Eken C, Kilicaslan I (2007) Differences between various glomerular filtration rate calculation methods in predicting patients at risk for contrast-induced nephropathy. Am J Emerg Med 25:487 (Correspondence)

    Article  PubMed  Google Scholar 

  • Erdogan A, Davidson CJ (2003) Recent clinical trials of iodixanol. Rev Cardiovasc Med 4(Suppl 5):S43–S50

    PubMed  Google Scholar 

  • Erley CM, Duda SH, Rehfuss D et al (1999) Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 14:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Fishbane S, Durham JH, Marzo K, Rudnick M (2004) N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 15:251–260

    Article  PubMed  CAS  Google Scholar 

  • Gare M, Haviv YS, Ben-Yehuda A et al (1999) The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography. J Am Coll Cardiol 34:1682–1688

    Article  PubMed  CAS  Google Scholar 

  • Gleeson T, Bulugahapitiya S (2004) Contrast induced nephropathy. Am J Roentgenol 183:1673–1689

    Google Scholar 

  • Goldenberg I, Matezky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172:1461–1467

    PubMed  Google Scholar 

  • Gruberg L, Mintz GS, Mehran R et al (2000) The prognostic implications of further renal function deterioration with 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol 36:1542–1548

    CAS  Google Scholar 

  • Gupta RK, Kapoor, Tewari S, Sinha N, Sharma RK (1999) Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study. Indian Heart J 51:521–536

    PubMed  CAS  Google Scholar 

  • Hans SS, Hans BA, Dhillon R, Dmuchowski C, Glover J (1998) Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency. Am Surg 64:432–436

    PubMed  CAS  Google Scholar 

  • Hardiek KJ, Katholi RE, Robbs RS, Katholi CE (2008) Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diab Complications 22:171–177

    Article  Google Scholar 

  • Haylor JL, Morcos SK (2000) Endothelin antagonism and contrast nephropathy. Kidney Int 58:2239

    Article  PubMed  CAS  Google Scholar 

  • Heinrich MC, Kuhlmann MK, Grgic A, Heckman M, Kramann B, Uder M (2005) Cytotoxic effects of ionic high-osmolar, nonioinic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro. Radiology 235:843–849

    Article  PubMed  Google Scholar 

  • Heyman SN, Rosenberger C, Rosen S (2005) Regional alterations in renal haemodynamics and oxygenation: a role contrast medium-induced nephropathy. Nephrol Dial Transplant 20(Suppl 1):i6–i11

    Article  PubMed  CAS  Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. Br Med J 327:557–560

    Article  Google Scholar 

  • Hoffmann U, Fischereder M, Kruger B, Drobnik W, Kramer BK (2004) The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 15:407–410

    Article  PubMed  CAS  Google Scholar 

  • Hou SH, Bushinsky DA, Wish JB et al (1983) Hospital acquired renal insufficiency: a prospective study. Am J Med 74:243–248

    Article  PubMed  CAS  Google Scholar 

  • Huber W, Ilgman K, Page M et al (2002) Effect of theophylline on contrast material-induced nephropathy on patients with chronic renal insufficiency: controlled, randomized, double-blinded study. Radiology 223:772–779

    Article  PubMed  CAS  Google Scholar 

  • Ix JH, McCulloch CE, Chertow GM (2004) Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transplant 19:2747–2753

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen JA, Lundby B, Kristoffersen DT et al (1992) Evaluation of renal function with delayed CT after injection of nonionic monomeric and dimeric contrast media in healthy volunteers. Radiology 182:419–424

    PubMed  CAS  Google Scholar 

  • Jingwei N, Ruiyan Z, Jiansheng Z, Xian Z, Weifeng S (2006). Safety of isoosmolar dimer during percutaneous coronary intervention. J Interv Radiol 15:327–329

    Google Scholar 

  • Jo S-H, Youn T-J, Koo B-K et al (2006) Renal toxicity evaluation and comparison between Visipaque (iodixanol) and Hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography. The RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930

    Article  PubMed  CAS  Google Scholar 

  • Katzberg WR (1997) Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity. Radiology 204:297–312

    PubMed  CAS  Google Scholar 

  • Katzberg R (2005) Contrast medium-induced nephrotoxicity: which pathways? Radiology 235:752–755

    Article  PubMed  Google Scholar 

  • Katzberg R, Barrett B (2007) Risk of contrast-induced nephropathy with intravenous administration of iodinated contrast media. Radiology 243:622–628

    Article  PubMed  Google Scholar 

  • Kini AS, Mitre CA, Kim M et al (2002) A protocol for prevention of radiographic contrast nephropathy during percutaneous coronary intervention: effect of selective dopamine receptor agonist fenoldopam. Catheter Cardiovasc Interv 55:169–173

    Article  PubMed  Google Scholar 

  • Kolehmainen H, Soiva M (2003) Comparison of Xenetix 300 and Visispaque 320 in patients with renal failure. Eur Radiol 13:B32–B33

    Google Scholar 

  • Krasuski RA, Beard BM, Geoghagan JD et al (2003) Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J Invasive Cardiol 15:699–702

    Google Scholar 

  • Kshirsagar AV, Poole C, Mottl A et al (2004) N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a metaanalysis of prospective controlled trials. J Am Soc Nephrol 15:761–769

    Article  PubMed  CAS  Google Scholar 

  • Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-Blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. Am J Roentgenol 1991:151–157

    Article  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    PubMed  CAS  Google Scholar 

  • Liu R, Nair D, Ix J et al (2005) N-acetylcysteine and contrastinduced nephropathy: systematic review and metaanalysis. J Gen Intern Med 20:193–200

    Article  PubMed  Google Scholar 

  • Love L, Johnson MS, Bresler ME et al (1994) The persistent computed tomography nephrogram: its significance in the diagnosis of contrast-associated nephrotoxicity. Br J Radiol 67:951–957

    PubMed  CAS  Google Scholar 

  • Maeder M, Klein M, Fehr T, Rickli H (2004) Contrast nephropathy: review focusing on prevention. J Am Coll Cardiol 44:1763–1771

    Article  PubMed  Google Scholar 

  • Marenzi G, Lauri G, Assanelli E et al (2004) Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 44:1780–1785

    Article  PubMed  Google Scholar 

  • Marenzi G, Assanelli E, Marana I et al (2006) N-acetylcysteine and contrast-induced nephropathy in primay angioplasty. N Engl J Med 354:273–278

    Article  Google Scholar 

  • McCarthy CS, Becker JA (1992) Multiple myeloma and contrast media. Radiology 183:519–521

    PubMed  CAS  Google Scholar 

  • McCullough PA, Wolyn R, Rocher LL et al (1997) Acute renal failure after coronary intervention: incidence, risk factors and relationship to mortality. Am J Med 103:368–375

    Article  PubMed  CAS  Google Scholar 

  • McCullough PA, Bertrand ME, Brinker JA, Stacul F (2006) A meta-analysis of the renal safety of iso-osmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 48:692–699

    Article  PubMed  CAS  Google Scholar 

  • Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. Development and initial validation. J Am Coll Cardiol 44:1393–1399

    PubMed  Google Scholar 

  • Mehran R for the ICON investigators (2006) Ionic versus nonionic contrast to obviate worsening nephropathy after angioplasty in chronic renal failure patients. Transcatheter Cardiovascular Therapies Meeting (TCT), Washington DC, 22–26 April 2006

    Google Scholar 

  • Merten GJ, Burgess W P, Gray LV et al (2004) Prevention of contrast induced nephropathy with sodium bicarbonate: a randomized trial. JAMA 291:2328–2338

    Article  PubMed  CAS  Google Scholar 

  • Meschi M, Detrenis S, Musini S et al (2006) Facts and fallacies concerning the prevention of contrast medium induced nephropathy. Crit Care Med 34:2060–2068

    Article  PubMed  Google Scholar 

  • Mitchell RL, Craig JC, Webster AC (2004) Cochrane renal group report. Am J Kidney Dis 43:752–756

    Article  Google Scholar 

  • Morcos SK (1998) Contrast media-induced nephrotoxicity — questions and answers. Br J Radiol 71:357–365

    PubMed  CAS  Google Scholar 

  • Morcos SK (2004) Prevention of contrast media nephrotoxicity — the story so far. Clin Radiol 59:381–389

    Article  PubMed  CAS  Google Scholar 

  • Morcos SK (2005) Prevention of contrast media-induced nephrotoxicity after angiographic procedures. J Vasc Interv Radiol 16:13–23

    PubMed  Google Scholar 

  • Morcos SK, Thomsen HS, Webb JAW and members of contrast media safety committee of the European Society of Urogenital Radiology (ESUR) (1999) Contrast media induced nephrotoxicity: a consensus report. Eur Radiol 9:1602–1613

    Article  PubMed  CAS  Google Scholar 

  • Mueller C, Burkle G, Buerkle HJ et al (2002) Prevention of contrast media-associated nephropathy. Randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162:329–336

    Article  PubMed  CAS  Google Scholar 

  • Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39:930–936

    Article  PubMed  Google Scholar 

  • Neumayer HH, Junge W, Kufner A, Wenning A (1989) Prevention of radiocontrast-media-induced nephrotoxicity by calcium channel blocker nitrendipine: a prospective randomized clinical trial. Nephrol Dial Transplant 4:1030–1036

    PubMed  CAS  Google Scholar 

  • Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105

    Article  PubMed  Google Scholar 

  • Nicholson T, Downes M (2003) Contrast nephrotoxicity and iso-osmolar contrast agents; implications of NEPHRIC. Clin Radiol 58:659–660

    Article  PubMed  CAS  Google Scholar 

  • Nikolsky E, Mehran R (2003) Understanding the consequences of contrast-induced nephropathy. Rev Cardovasc Med 4(Suppl 5):S10–S18

    Google Scholar 

  • Oldroyd SD, Haylor JL, Morcos SK (1995) Bosentan, an orally active endothelin antagonist: effect on the renal response to contrast media. Radiology 196:661–665

    PubMed  CAS  Google Scholar 

  • Oldroyd SD, Fang L, Haylor JL, Yates MS, El Nahas AM, Morcos SK (2000) Effects of adenosine receptor antagonists on the responses to contrast media in the isolated rat kidney. Clin Sci 98:303–311

    Article  PubMed  CAS  Google Scholar 

  • Olsen JC, Salomon B (1996) Utility of the creatinine prior to intravenous contrast studies in the emergency department. J Emerg Med 14:543–546

    Article  PubMed  CAS  Google Scholar 

  • Pannu N, Manns B, Lee H, Tonelli M (2004) Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int 65:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Pannu N, Wiebe N, Tonelli M for the Alberta Kidney Disease Network (2006) Prophylaxis strategies for contrast-induced nephropathy. JAMA 295:2765–2779

    Article  PubMed  CAS  Google Scholar 

  • Parfrey PS, Griffiths SM, Barrett BJ et al (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study. N Engl J Med 320:143–149

    PubMed  CAS  Google Scholar 

  • Poletti PA, Saudan P, Platon A et al (2007) I.V. N-acetylcysteine and emergency CT: use of serum creatinine and Cystatin C as markers of radiocontrast nephrotoxicity. Am J Roentgenol 189:687–692

    Article  Google Scholar 

  • Pugh ND, Sissons GR, Ruttley et al (1993) Iodixanol in femoral arteriography (phase III): a comparative double double-blind parallel trial between iodixanol and iopromide. Clin Radiol 47:96–99

    Article  PubMed  CAS  Google Scholar 

  • Recio-Mayoral A, Chaparro M, Pardo B et al (2007) The renoprotective effect of hydration with sodium bicarbonate plus N-acetylcystesine in patients undergoing emergency percutaneous coronary intervention: the RENO study. J Am Coll Cardiol 49:1283–1238

    Article  PubMed  CAS  Google Scholar 

  • Rudnik MR, Goldfarb S, Wexler L et al (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int 47:254–261

    Article  Google Scholar 

  • Sadeghi HM, Stone GW, Grines CL et al (2003) Impact of renal insufficiency in patients undergoing primary angioplasty for acute myocardial infarction. Circulation 108:2769–2775

    Article  PubMed  Google Scholar 

  • Safirstein R, Andrade L, Viera JM (2000) Acetylcysteine and nephrotoxic effects of radiographic contrast agents — a new use for an old drug. N Engl J Med 342:210–211

    Article  Google Scholar 

  • Sharma SK, Kini A (2005) Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials. Catheter Cardiovasc Interv 65:386–393

    Article  PubMed  Google Scholar 

  • Solomon R (1998) Contrast medium-induced acute renal failure. Kidney Int 53:230–242

    Article  PubMed  CAS  Google Scholar 

  • Solomon R (2005) The role of osmolality in the incidence of contrast-induced nephropathy: A systematic review of angiographic contrast media in high risk patients. Kidney Int 68:2256–2263

    Article  PubMed  CAS  Google Scholar 

  • Solomon R, DuMouchel W (2006) Contrast media and nephropathy. Findings from systematic analysis and Food and Drug Administration reports of adverse effects. Invest Radiol 41:651–660

    Article  PubMed  Google Scholar 

  • Solomon R, Werner C, Mann D, D’Elia J, Silva P (1994) Effects of saline, mannitol and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331:1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Solomon R, Natarajan M, Doucet S et al (2007) The cardiacangiography in renally impaired patients (CARE) study: A randomized, double blind trial of contrast-induced nephropathy (CIN) in high risk patients. Circulation 115:3189–3196

    Article  PubMed  Google Scholar 

  • Spargias K, Alexopoulos E, Kyrzopoulos S et al (2004) Ascorbic acid prevents contrast mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention Circulation 110:2837–2842

    PubMed  CAS  Google Scholar 

  • Stevens MA, McCullough PA, Tobin KJ et al (1999) A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy. Results of the P.R.I.N.C.E study. J Am Coll Cardiol 33:403–411

    Article  PubMed  CAS  Google Scholar 

  • Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function — measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Stone GW, McCullough PA, Tumlin JA et al (2003) CONTRAST investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290:2284–2291

    Article  PubMed  CAS  Google Scholar 

  • Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED. Preparation for angiography in renal dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114:1570–1574

    Article  PubMed  CAS  Google Scholar 

  • Tepel M, Giet MVD, Schwarzfeld C et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180–184

    Article  PubMed  CAS  Google Scholar 

  • Thomsen HS (1999) Contrast nephropathy. In: Thomsen HS, Muller RN, Mattrey RF (eds) Trends in contrast media. Springer, Berlin, pp 103–116

    Google Scholar 

  • Thomsen HS, Golman K, Hemmingsen L, Larsen S, Skaarup P, Svendsen O (1993) Contrast medium induced nephropathy: animal experiments. Front Eur Radiol 9:83–108

    Google Scholar 

  • Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) In which patients should serum-creatinine be measured before contrast medium administration? Eur Radiol 15:749–756

    Article  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK (2006) Contrast-medium-induced nephropathy: is there a new consensus? A review of published guidelines. Eur Radiol 16:1835–1840

    Article  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK (2008) Risk of contrast medium induced nephropathy in high risk patients undergoing MDCT — A pooled analysis of two randomized trials. Eur Radiol Epub DOI 10.1007/s00300-008-1206-4

    Google Scholar 

  • Thomsen HS, Morcos SK, Barrett BJ (2008a) Contrast induced nephropathy: The wheel has turned 360 degrees. Acta Radiol 49:646–657

    Article  CAS  Google Scholar 

  • Thomsen HS; Morcos SK, Erley CM et al (2008b) The ACTIVE trial: Comparison of the effects on renal function of iomeprol-4000 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43:170–178

    Article  CAS  Google Scholar 

  • Tippins RB, Torres WE, Baumgartner BR, Baumgarten DA (2000) Are screening serum creatinine levels necessary prior to outpatient CT examinations? Radiology 216:481–484

    PubMed  CAS  Google Scholar 

  • Toprak O (2006) Angiotension converting emzymes inhibitors and contrast-induced nephropathy. Renal Fail 28:99–100

    Article  CAS  Google Scholar 

  • Toprak O, Cirit M, Mayata S, Yesil M, Aslan LS (2003) The effect of pre-procedural captopril on contrast media induced nephropathy who underwenet coronary angiography. Anadolu Kardiyol Derg 3:98–103

    PubMed  Google Scholar 

  • Trivedi HS, Moore H, Nasr S et al (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93:c29–c34

    Article  PubMed  CAS  Google Scholar 

  • Vaitkus PT, Brar C (2007) N-acetylcysteine in the prevention of contrast induced nephropathy: publication bias perpetuated by meta-analysis. Am Heart J 153:175–280

    Article  CAS  Google Scholar 

  • Wang A, Holcslaw T, Bashore TM et al (2000) Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 57:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JM, Heyman S, Brezis M (1992) Potential deleterious effect of furosemide in radiocontrast nephropathy Nephron 62:413–415

    CAS  Google Scholar 

  • Weisberg L, Kurnik PB, Kurnik RC (1994) Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int 45:259–265

    Article  PubMed  CAS  Google Scholar 

  • Wessely R, Koppara T, Kastrati A, Bradoric C, Schultz S, Vorpahl M, Mehilli et al (2008) Iso-osmolar vs low-osmolar contrast medium in patients with impaired renal function undergoing PCI — CONTRAST. Society for cardiovascular Angiography and Interventions Meeting (SCAI), Chicago, 1 April 2008

    Google Scholar 

  • Yamazaki H, Matsushita M, Inoue T et al (1997a) Renal cortical retention on delayed CT after angiography and contrast associated nephropathy. Br J Radiol 70:897–902

    CAS  Google Scholar 

  • Yamazaki H, Oi H, Matsushita M et al (1997b) Lack of correlation between gallbladder opacification in delayed CT and contrast-associated nephropathy. Eur Radiol 7:1328–1331

    Article  CAS  Google Scholar 

  • Zagler A, Azadpour M, Mercado C, Hennekens CH (2005) N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trial. Am Heart J 151:140–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomsen, H.S. (2009). Contrast Medium-Induced Nephropathy. In: Thomsen, H.S., Webb, J.A.W. (eds) Contrast Media. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72784-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72784-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72783-5

  • Online ISBN: 978-3-540-72784-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics