Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 9941 Accesses

  • 6 Citations

Abstract

This chapter introduces the current state of the art of brain—computer interface (BCI) technology based on noninvasive surface electroencephalogram (EEG) recordings. The basic idea of a BCI is to enable a new communication channel that bypasses the standard neural pathways and output channels in order to control an external device. The ultimate goal of BCI technology is to enable lost body or communication functions in handicapped persons. Persons suffering from, e.g., amyotrophic lateral sclerosis (ALS), stroke or spinal cord injuries might lose the ability to fully control (peripheral) muscle activity. Depending on the disease either the neural pathway might be affected or the muscle itself. In a first attempt one can substitute the neural pathways or the affected muscles with still functional pathways or muscles. This approach might be very beneficial to the subjects, though the approach might also have limitations. Subjects can use, e.g., eye movements for communication or control. In the BCI approach body functions are restored by detecting the proper neural or muscle activity above the level of injury. These signals can serve as input to the BCI, which properly encodes the patterns and converts the activity into control commands. After a certain time of training the BCI can predict the user’s intentions and the user can operate, e.g., the closing/opening of a robotic hand or control a wheelchair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan: Brain-computer interfaces for communication and control, Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  2. J.J. Vidal: Toward direct brain-computer communication, Annu. Rev. Biophys. Bioeng. 2, 157–180 (1973)

    Article  Google Scholar 

  3. L.A. Farwell, E. Donchin: Talking off the top of your head: Toward a mental prosthesis utilizing eventrelated brain potentials, Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

    Article  Google Scholar 

  4. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, H. Flor: A spelling device for the paralysed, Nature 398, 297–298 (1999)

    Article  Google Scholar 

  5. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller: How many people are able to operate an EEG-based brain-computer interface (BCI)?, IEEE Trans. Neural Syst. Rehabil. Eng. 11, 145–147 (2003)

    Article  Google Scholar 

  6. G. Pfurtscheller, G.R. Müller, J. Pfurtscheller, H.J. Gerner, R. Rupp: ‘Thought’-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia, Neurosci. Lett. 351, 33–36 (2003)

    Article  Google Scholar 

  7. G. Townsend, B.K. LaPallo, C.B. Boulay, D.J. Krusienski, G.E. Frye, C.K. Hauser, N.E. Schwartz, T.M. Vaughan, J.R. Wolpaw, E.W. Sellers: A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns, Clin. Neurophysiol. 121, 1109–1120 (2010)

    Article  Google Scholar 

  8. T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Sarnacki, D.J. Krusienski, E.W. Sellers, J.R. Wolpaw: The Wadsworth BCI research and development program: At home with BCI, IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 229–233 (2006)

    Article  Google Scholar 

  9. C. Neuper, G.R. Müller, A. Kübler, N. Birbaumer, G. Pfurtscheller: Clinical application of an EEG-based brain-computer interface: A case study in a patient with severe motor impairment, Clin. Neurophysiol. 114, 399–409 (2003)

    Article  Google Scholar 

  10. B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio, K.R. Muller: The Berlin brain-computer interface: Accurate performance from first-session in BCI-naïve subjects, IEEE Trans. Biomed. Eng. 55(10), 2452–2462 (2008)

    Article  Google Scholar 

  11. Z. Haihong, G. Cuntai, W. Chuanchu: Asynchronous P300-based brain-computer interfaces: A computational approach with statistical models, IEEE Trans. Biomed. Eng. 55(6), 1754–1763 (2008)

    Article  Google Scholar 

  12. C. Neuper, R. Scherer, S. Wriessnegger, G. Pfurtscheller: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface, Clin. Neurophysiol. 120, 239–247 (2009)

    Article  Google Scholar 

  13. R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, G. Pfurtscheller: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment, IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

    Article  Google Scholar 

  14. A. Nijholt, D. Tan: Brain-computer interfacing for intelligent systems, IEEE Intell. Syst. 23(3), 72–79 (2008)

    Article  Google Scholar 

  15. E. Donchin, K.M. Spencer, R. Wijesinghe: The mental prosthesis: Assessingthe speed of a P300-based brain-computer interface, IEEE Trans. Rehabil. Eng. 8, 174–179 (2000)

    Google Scholar 

  16. D.J. Krusienski, E.W. Sellers, F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw: A comparison of classification techniques for the P300 Speller, J. Neural Eng. 3, 299–305 (2006)

    Article  Google Scholar 

  17. D.J. Krusienski, E.W. Sellers, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw: Toward enhanced P300 speller performance, J. Neurosci. Methods 167, 15–21 (2008)

    Article  Google Scholar 

  18. H. Zhang, C. Guan, C. Wang: Asynchronous P300-based brain-computer interfaces: A computational approach with statistical models, IEEE Trans. Biomed. Eng. 55, 1754–1763 (2008)

    Article  Google Scholar 

  19. G. Schalk, D.J. McFarland, T. Hinterberger, N. Bir-baumer, J.R. Wolpaw: BCI2000: A general-purpose brain-computer interface (BCI) system, IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  20. G. Schalk, J. Kubanek, K.J. Miller, N.R. Anderson, E.C. Leuthardt, J.G. Ojemann, D. Limbrick, D. Moran, L.A. Gerhardt, J.R. Wolpaw: Decoding two-dimensional movement trajectories using electrocorticographic signals in humans, J. Neural Eng. 4(3), 264–275 (2007)

    Article  Google Scholar 

  21. G. Pfurtscheller, C. Neuper, G.R. Muller, B. Obermaier, G. Krausz, A. Schlogl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M. Wortz, G. Supp, C. Schrank: Graz-BCI: State of the art and clinical applications, IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 177–180 (2003)

    Article  Google Scholar 

  22. E.W. Sellers, D.J. Krusienski, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw: A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance, Biol. Psychol. 73, 242–252 (2006)

    Article  Google Scholar 

  23. F. Cincotti, L. Kauhanen, F. Aloise, T. Palomaki, N. Caporusso, P. Jylanki, F. Babiloni, G. Vanacker, M. Nuttin, M.G. Marciani, R.M. Del, D. Mattia: Preliminary experimentation on vibrotactile feedback in the context of mu-rhythm based BCI, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007 (IEEE, 2007) pp. 4739–4742

    Google Scholar 

  24. O. Friman, I. Volosyak, A. Graser: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces, IEEE Trans. Biomed. Eng. 54(4), 742–750 (2007)

    Article  Google Scholar 

  25. G.R. Muller-Putz, G. Pfurtscheller: Control of an electrical prosthesis with an SSVEP-based BCI, IEEE Trans. Biomed. Eng. 55, 361–364 (2008)

    Article  Google Scholar 

  26. G. Pfurtscheller, A. Aranibar: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement, Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979)

    Article  Google Scholar 

  27. G. Pfurtscheller, C. Neuper, C. Andrew, G. Edlinger: Foot and hand area mu rhythms, Int. J. Psychophysiol. 26, 121–135 (1997)

    Article  Google Scholar 

  28. G. Pfurtscheller, F.H. Lopes da Silva: Event-related EEG/MEG synchronization and desynchronization: Basic principles, Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  29. G. Pfurtscheller: Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery, Suppl. Clin. Neurophysiol. 53, 196–198 (2000)

    Article  Google Scholar 

  30. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran: A brain-computer interface using electrocorticographic signals in humans, J. Neural Eng. 1(2), 63–71 (2004)

    Article  Google Scholar 

  31. E.C. Leuthardt, K.J. Miller, G. Schalk, R.P.N. Rao, J.G. Ojemann: Electrocorticography-based brain-computer interface — The Seattle experience, IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 194–198 (2006)

    Article  Google Scholar 

  32. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442, 164–171 (2006)

    Article  Google Scholar 

  33. E.A. Felton, J.A. Wilson, J.C. Williams, P.C. Garell: Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases, J. Physiol. 106, 495–500 (2007)

    Google Scholar 

  34. J.M. Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M. Santucci, D.F. Dimitrov, P.G. Patil, C.S. Henriquez, M.A. Nicolelis: Learning to control a brain-machine interface for reaching and grasping by primates, PLoS Biology 1(2), 192–208 (2003)

    Article  Google Scholar 

  35. G. Edlinger: Towards the Realization of a High-Resolution EEG, Dissertation (University of Technology Graz, Graz 1998)

    Google Scholar 

  36. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller: How many people are able to operate an EEG-based brain-computer interface (BCI)?, IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)

    Article  Google Scholar 

  37. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw: Electroencephalographic (EEG) control of three-dimensional movement, J. Neural Eng. 7(3), 036007 (2010)

    Article  Google Scholar 

  38. J.R. Wolpaw, D.J. McFarland: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans, Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004)

    Article  Google Scholar 

  39. G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, C. Neuper: Brain oscillations control hand orthosis in a tetraplegic, Neurosci. Lett. 292(3), 211–214 (2000)

    Article  Google Scholar 

  40. J.R. Millan, F. Renkens, J. Mourino, W. Gerstner: Noninvasive brain-actuated control of a mobile robot by human EEG, IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)

    Article  Google Scholar 

  41. T. Komatsu, N. Hata, Y. Nakajima, K. Kansaku: A non-training EEG-based BMI system for environmental control, Neurosci. Res. 61(1), S251 (2008)

    Google Scholar 

  42. H. Serby, E. Yom-Tov, G.F. Inbar: An improved P300-based brain-computer interface, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 89–98 (2005)

    Article  Google Scholar 

  43. C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica, G. Edlinger: How many people are able to control a P300-based brain-computer interface (BCI)?, Neurosci. Lett. 462(1), 94–98 (2009)

    Article  Google Scholar 

  44. G. Edlinger, C. Holzner, C. Guger, C. Groenegress, M. Slater: Brain-computer interfaces for goal orientated control of a virtual smart home environment, 4th Int. IEEE/EMBS Conf. on Neural Eng. NER 09 (IEEE/EBMS, 2009) pp. 463–465

    Google Scholar 

  45. G. Pfurtscheller, R. Leeb, C. Keinrath, D. Friedman, C. Neuper, C. Guger, M. Slater: Walking from thought, Brain Res. 1071, 145–152 (2006)

    Article  Google Scholar 

  46. B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, A. Graser: BCI Demographics: How many (and what kinds of) people can use an SSVEP BCI?, IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 107–116 (2010)

    Article  Google Scholar 

  47. G. Pfurtscheller, B.Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R. Scherer, T.O. Zander, G. Mueller-Putz, C. Neuper, N. Birbaumer: The hybrid BCI, Front Neurosci. 4,42 (2010)

    Google Scholar 

  48. F. Nijboer, E.W. Sellers, J. Mellinger, M.A. Jordan, T. Matuz, A. Furdea, S. Halder, U. Mochty, D.J. Krusienski, T.M. Vaughan, J.R. Wolpaw, N. Birbaumer, A. Kübler: A P300-based brain-computer interface for people with amyotrophic lateral sclerosis, Clin. Neurophysiol. 119, 1909–1916 (2008)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edlinger, G., Rizzo, C., Guger, C. (2011). Brain Computer Interface. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics