Abstract
In the Chapter different measurement systems for medical diagnosis are described. Different kinds of diagnostic images are exploited: ultrasound images for carotid analysis, epiluminescence microscopy (ELM) images for skin lesion diagnosis, and mammograms for breast cancer diagnosis. Thanks to the difference in the nature of images and in the investigated quantities the obtainable suggestions can be useful for a wide field of image processing for medical parameter evaluation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bond, M.G., Wilmoth, S.K., et al.: Detection and Monitoring of Asymptomatic Atherosclerosis in Clinical Trials. The Americal Journal of Medicine 86(suppl. 4A), 33–36 (1989)
Touboboul, P.J., Prati, P., et al.: Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. Journal of Hypertension 10(suppl. 5), S37–S41 (1992)
El-Barghouty, N.M., Levine, T., Ladva, S., Flanagan, A., Nicoladeis, A.: Histological Verification of Computerized Carotid Plaque Characterisation. European Journal Vascular Endovascular Surgey 11, 414–416 (1996)
Gill, J.D., Ladak, H.M., Steinman, D.A., Fenster, A.: Segmentation of ulcerated plaque: a semi-automatic method for tracking the progression of carotid atherosclerosis. In: Proc. of EMBS Conference, pp. 669–672 (2000)
Noritomi, T., et al.: Carotid Plaque Typing by Multiple-Parameter Ultrasonic Tissue Characterization. Ultrasound in Medicine & Biology 23(5), 643–650 (1997)
Fenster, A., Downey, N.M.: 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology 15(11), 41–51 (1996)
Hossack, J.A., Sumanaweera, T.S., Napel, S.: Quantitative 3D ultrasound imaging using an automated image tracking technique. In: Proc. of IEEE Ultrasonic symposium, pp. 1593–1596 (2000)
Rosenfield, K., et al.: Three-dimensional reconstruction of human carotid arteries from images obtained during non-invasive B-mode ultrasound examination. The American Journal of Cardiology 70(8), 379–384 (1992)
Wilhjelm, J.E., et al.: Estimation of plaque contents with multi-angle 3D compound imaging. In: Proc. of IEEE Ultrasonic Symposium, pp. 1077–1080 (1996)
Liguori, C., Paolillo, A., Pietrosanto, A.: An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Trans. on I&M 50(6), 1684–1691 (2001)
Betta, G., Liguori, C., Pietrosanto, A.: A structured approach to estimate the measurement uncertainty in digital signal processing algorithms. IEE Proc. Inst. Elect. Eng. Sci. Meas. Technol. 146(1), 21–26 (1999)
UNI CEI ENV 13005 (2000)Guide to the expression of uncertainty measurement
Capriglione, D., Ferrigno, L., Liguori, C., Paolillo, A.: Volumetric Carotid Plaque Measurements Based on Ultrasound Images: A Preliminary Approach. In: Proceedings of the 12th IMEKO TC-4 Part 1, pp. 255–260 (2002)
Ferrigno, L., Paciello, V., Paolillo, A.: A low cost measurement system for the 3-D evaluation of carotid plaque based on ultrasound images. In: Proceeding of 13th International Symposium on Measurements for Research and Industry Applications, IMEKO TC 4, pp. 468–474 (2004)
Ganster, H., et al.: Automated melanoma recognition. IEEE Transaction on Medical Imaging 20, 233–239 (2001)
Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)
Hoffmann, K., Gambichler, T., et al.: Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy. Br. J. Dermatology 149, 801–809 (2003)
Binder, M., Schwartz, M., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists. Archives of Dermatology 131, 286–291 (1995)
Fabbrocini, G., Argenziano, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archives of Dermatology 134, 1563–1570 (1998)
Di Leo, G., Fabbrocini, G., Liguori, C., Pietrosanto, A., Scalvenzi, M.: ELM image processing for melanocytic skin lesion based on 7-point checklist: a preliminary discussion. In: Proc. of the 13th IMEKO TC-4 Symposium, pp. 474–479 (2004)
Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Scalvenzi, M.: Automated Application of the 7-point checklist Diagnosis Method for Skin Lesions: Estimation of Chromatic and Shape Parameters. In: Proceeding of Instrumentation and Measurement Technology Conference, IMTC, pp. 1818–1822 (2005)
Di Leo, G., Liguori, C., Paolillo, A., Sommella, P.: An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions. In: IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems, VECIMS, pp. 190–195 (2008)
Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on System Man Cybernetics 9(1), 62–66 (1979)
Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)
Stolz, W., Braun-Falco, O., et al.: Color Atlas of Dermatoscopy. Blackwell Science, Malden (1994)
Argenziano, G., Soyer, H.P., et al.: Interactive Atlas of Dermoscopy. EDRA Medical Publishing & New Media, Milan (2002)
Di Leo, G., Fabbrocini, G., Paolillo, A., Rescigno, O., Sommella, P.: Toward an automatic diagnosis system for skin lesions: estimation of blue-whitish veil and regression structures. In: International Multi-Conference on Systems, Signals & Devices, SSD 2009 (2009)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey
Koonty, W., Narenda, P.M., Fukunya, F.: A graph theoretic approach to non-parametric cluster analysis. IEEE Transactions on Computer 25, 936–944 (1976)
Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)
Landwehr, N., Hall, M., Frank, E.: Logistic Model Trees. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 241–252. Springer, Heidelberg (2003)
Levy, A., Lindenbaum, M.: Sequential Karhuen-Loeve basis extraction and its Application to images¸. IEEE Trans. on Image Processing 9(8), 1371–1374 (2000)
National Black Leadership Initiative on Cancer III: Community Networks Program, Breast Cancer Fact Sheet (Revised 10/21), http://www.nblic.org
Chan, H.P., Sahiner, B., et al.: Improvement of Radiologists’ Characterization of Mammographic Masses by using Computer aided Diagnosis: An ROC study. Radiology (212), 817–827 (1999)
Cheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X.: Computer-aided detection and classification of microcalcification in mammograms: a survey. Pattern Recognition 36, 2967–2991 (2003)
Nishikawa, R.: Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 31, 1357–1376 (2007)
Wu, Y., Giger, M.L., et al.: Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology 187, 81–87 (1993)
El-Naqa, Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging 21(12), 1552–1563 (2002)
Wei, L., Yang, Y., Nishikawa, R.E., Wernick, R.E., Edwards, A.: Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Transactions on Medical Imaging 24(10), 1278–1285 (2005)
Jiang, J., Yao, B., Wason, A.M.: A genetic algorithm design for microcalcification detection and classification in digital mammograms. Computerized Medical Imaging and Graphics 31, 49–61 (2007)
Nakayama, R., Uchiyama, Y., Yamamoto, K., Watanabe, R., Namba, K.: Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms. IEEE Transactions on Biomedical Engineering 53(2), 273–283 (2006)
Strickland, R.E., Hahn, H.I.: Wavelet transform for detecting microcalcifications in mammograms. IEEE Transactions on Medical Imaging 15(2), 218–229 (1996)
Netsch, T., Peitgen, H.: Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transaction on Medical Imaging 18(9), 774–786 (1999)
Gurcan, M.N., Yardimci, Y., Cetin, A.E., Ansari, R.R.: Detection of microcalcifications in mammograms using higher order statistics. IEEE Signal Processing Letters 4(8), 213–216 (1997)
Li, S.Z.: Markov random field modeling in image analysis. Kluwer Academic, Dordrecht (2001)
Medina, R., Garreau, M., et al.: Markov random field modeling for three-dimensional reconstruction of the left ventricle in cardiac angiography. IEEE Transactions on Medical Imaging 25(8), 1087–1100 (2006)
Suliga, M., Deklerck, R., Nyssen, E.: Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Computerized Medical Imaging and Graphics 32, 502–512 (2008)
Yu, S.N., Li, K.Y., Huang, Y.K.: Detection of microcalcifications in digital mammograms using wavelet filter and markov random field model. Computerized Medical Imaging and Graphics 30, 163–173 (2006)
Tsujii, O., Freedman, M.T., Mun, S.K.: Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network. Pattern Recognition 32, 891–903 (1999)
Cheng, H.D., Wang, J., Shi, X.: Microcalcification detection using fuzzy logic and scale space approach. Pattern Recognition 37, 363–375 (2004)
Papadopoulos, A., Fotiadis, D.I., Likas, A.: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artificial Intelligence in Medicine 34, 141–150 (2005)
De Santo, M., Molinara, M., Tortorella, F., Vento, M.: Automatic classification of clustered microcalcifications by a multiple expert system. Pattern Recognition (3), 1467–1477 (2003)
D’Elia, C., Marrocco, C., Molinara, M., Tortorella, F.: Detection of Clusters of Microcalcifications in Mammograms: A Multi Classifier Approach. In: Proc. 21st IEEE International Symposium on Computer-based Medical Systems, pp. 572–577. IEEE Computer Society Press, Los Alamitos (2008)
D’Elia, C., Poggi, G., Scarpa, G.: A tree-structured Markov random field model for bayesian image segmentation. IEEE Transactions on Image Processing 12(10), 1259–1273 (2003)
Marrocco, C., Molinara, M., Tortorella, F.: Algorithms for detecting clusters of microcalcifications in mammograms. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 884–891. Springer, Heidelberg (2005)
Peng, Y., Yao, B., Jiang, J.: Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artificial Intelligence in Medicine 37, 43–53 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Capriglione, D., Ferrigno, L., Liguori, C., Paolillo, A., Sommella, P., Tortorella, F. (2010). Digital Processing of Diagnostic Images. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. Lecture Notes in Electrical Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05167-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-05167-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05166-1
Online ISBN: 978-3-642-05167-8
eBook Packages: EngineeringEngineering (R0)