Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 55))

  • 2023 Accesses

  • 4 Citations

Abstract

In the Chapter different measurement systems for medical diagnosis are described. Different kinds of diagnostic images are exploited: ultrasound images for carotid analysis, epiluminescence microscopy (ELM) images for skin lesion diagnosis, and mammograms for breast cancer diagnosis. Thanks to the difference in the nature of images and in the investigated quantities the obtainable suggestions can be useful for a wide field of image processing for medical parameter evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bond, M.G., Wilmoth, S.K., et al.: Detection and Monitoring of Asymptomatic Atherosclerosis in Clinical Trials. The Americal Journal of Medicine 86(suppl. 4A), 33–36 (1989)

    Google Scholar 

  2. Touboboul, P.J., Prati, P., et al.: Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. Journal of Hypertension 10(suppl. 5), S37–S41 (1992)

    Google Scholar 

  3. El-Barghouty, N.M., Levine, T., Ladva, S., Flanagan, A., Nicoladeis, A.: Histological Verification of Computerized Carotid Plaque Characterisation. European Journal Vascular Endovascular Surgey 11, 414–416 (1996)

    Article  Google Scholar 

  4. Gill, J.D., Ladak, H.M., Steinman, D.A., Fenster, A.: Segmentation of ulcerated plaque: a semi-automatic method for tracking the progression of carotid atherosclerosis. In: Proc. of EMBS Conference, pp. 669–672 (2000)

    Google Scholar 

  5. Noritomi, T., et al.: Carotid Plaque Typing by Multiple-Parameter Ultrasonic Tissue Characterization. Ultrasound in Medicine & Biology 23(5), 643–650 (1997)

    Article  Google Scholar 

  6. Fenster, A., Downey, N.M.: 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology 15(11), 41–51 (1996)

    Article  Google Scholar 

  7. Hossack, J.A., Sumanaweera, T.S., Napel, S.: Quantitative 3D ultrasound imaging using an automated image tracking technique. In: Proc. of IEEE Ultrasonic symposium, pp. 1593–1596 (2000)

    Google Scholar 

  8. Rosenfield, K., et al.: Three-dimensional reconstruction of human carotid arteries from images obtained during non-invasive B-mode ultrasound examination. The American Journal of Cardiology 70(8), 379–384 (1992)

    Article  Google Scholar 

  9. Wilhjelm, J.E., et al.: Estimation of plaque contents with multi-angle 3D compound imaging. In: Proc. of IEEE Ultrasonic Symposium, pp. 1077–1080 (1996)

    Google Scholar 

  10. Liguori, C., Paolillo, A., Pietrosanto, A.: An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Trans. on I&M 50(6), 1684–1691 (2001)

    Google Scholar 

  11. Betta, G., Liguori, C., Pietrosanto, A.: A structured approach to estimate the measurement uncertainty in digital signal processing algorithms. IEE Proc. Inst. Elect. Eng. Sci. Meas. Technol. 146(1), 21–26 (1999)

    Article  Google Scholar 

  12. UNI CEI ENV 13005 (2000)Guide to the expression of uncertainty measurement

    Google Scholar 

  13. Capriglione, D., Ferrigno, L., Liguori, C., Paolillo, A.: Volumetric Carotid Plaque Measurements Based on Ultrasound Images: A Preliminary Approach. In: Proceedings of the 12th IMEKO TC-4 Part 1, pp. 255–260 (2002)

    Google Scholar 

  14. Ferrigno, L., Paciello, V., Paolillo, A.: A low cost measurement system for the 3-D evaluation of carotid plaque based on ultrasound images. In: Proceeding of 13th International Symposium on Measurements for Research and Industry Applications, IMEKO TC 4, pp. 468–474 (2004)

    Google Scholar 

  15. Ganster, H., et al.: Automated melanoma recognition. IEEE Transaction on Medical Imaging 20, 233–239 (2001)

    Article  Google Scholar 

  16. Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)

    Article  Google Scholar 

  17. Hoffmann, K., Gambichler, T., et al.: Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy. Br. J. Dermatology 149, 801–809 (2003)

    Article  Google Scholar 

  18. Binder, M., Schwartz, M., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists. Archives of Dermatology 131, 286–291 (1995)

    Article  Google Scholar 

  19. Fabbrocini, G., Argenziano, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archives of Dermatology 134, 1563–1570 (1998)

    Article  Google Scholar 

  20. Di Leo, G., Fabbrocini, G., Liguori, C., Pietrosanto, A., Scalvenzi, M.: ELM image processing for melanocytic skin lesion based on 7-point checklist: a preliminary discussion. In: Proc. of the 13th IMEKO TC-4 Symposium, pp. 474–479 (2004)

    Google Scholar 

  21. Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Scalvenzi, M.: Automated Application of the 7-point checklist Diagnosis Method for Skin Lesions: Estimation of Chromatic and Shape Parameters. In: Proceeding of Instrumentation and Measurement Technology Conference, IMTC, pp. 1818–1822 (2005)

    Google Scholar 

  22. Di Leo, G., Liguori, C., Paolillo, A., Sommella, P.: An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions. In: IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems, VECIMS, pp. 190–195 (2008)

    Google Scholar 

  23. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on System Man Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  24. Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)

    Article  Google Scholar 

  25. Stolz, W., Braun-Falco, O., et al.: Color Atlas of Dermatoscopy. Blackwell Science, Malden (1994)

    Google Scholar 

  26. Argenziano, G., Soyer, H.P., et al.: Interactive Atlas of Dermoscopy. EDRA Medical Publishing & New Media, Milan (2002)

    Google Scholar 

  27. Di Leo, G., Fabbrocini, G., Paolillo, A., Rescigno, O., Sommella, P.: Toward an automatic diagnosis system for skin lesions: estimation of blue-whitish veil and regression structures. In: International Multi-Conference on Systems, Signals & Devices, SSD 2009 (2009)

    Google Scholar 

  28. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey

    Google Scholar 

  29. Koonty, W., Narenda, P.M., Fukunya, F.: A graph theoretic approach to non-parametric cluster analysis. IEEE Transactions on Computer 25, 936–944 (1976)

    Article  Google Scholar 

  30. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  31. Landwehr, N., Hall, M., Frank, E.: Logistic Model Trees. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 241–252. Springer, Heidelberg (2003)

    Google Scholar 

  32. Levy, A., Lindenbaum, M.: Sequential Karhuen-Loeve basis extraction and its Application to images¸. IEEE Trans. on Image Processing 9(8), 1371–1374 (2000)

    Article  MATH  Google Scholar 

  33. National Black Leadership Initiative on Cancer III: Community Networks Program, Breast Cancer Fact Sheet (Revised 10/21), http://www.nblic.org

  34. Chan, H.P., Sahiner, B., et al.: Improvement of Radiologists’ Characterization of Mammographic Masses by using Computer aided Diagnosis: An ROC study. Radiology (212), 817–827 (1999)

    Google Scholar 

  35. Cheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X.: Computer-aided detection and classification of microcalcification in mammograms: a survey. Pattern Recognition 36, 2967–2991 (2003)

    Article  MATH  Google Scholar 

  36. Nishikawa, R.: Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 31, 1357–1376 (2007)

    Article  Google Scholar 

  37. Wu, Y., Giger, M.L., et al.: Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology 187, 81–87 (1993)

    Google Scholar 

  38. El-Naqa, Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging 21(12), 1552–1563 (2002)

    Article  Google Scholar 

  39. Wei, L., Yang, Y., Nishikawa, R.E., Wernick, R.E., Edwards, A.: Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Transactions on Medical Imaging 24(10), 1278–1285 (2005)

    Article  Google Scholar 

  40. Jiang, J., Yao, B., Wason, A.M.: A genetic algorithm design for microcalcification detection and classification in digital mammograms. Computerized Medical Imaging and Graphics 31, 49–61 (2007)

    Article  Google Scholar 

  41. Nakayama, R., Uchiyama, Y., Yamamoto, K., Watanabe, R., Namba, K.: Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms. IEEE Transactions on Biomedical Engineering 53(2), 273–283 (2006)

    Article  Google Scholar 

  42. Strickland, R.E., Hahn, H.I.: Wavelet transform for detecting microcalcifications in mammograms. IEEE Transactions on Medical Imaging 15(2), 218–229 (1996)

    Article  Google Scholar 

  43. Netsch, T., Peitgen, H.: Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transaction on Medical Imaging 18(9), 774–786 (1999)

    Article  Google Scholar 

  44. Gurcan, M.N., Yardimci, Y., Cetin, A.E., Ansari, R.R.: Detection of microcalcifications in mammograms using higher order statistics. IEEE Signal Processing Letters 4(8), 213–216 (1997)

    Article  Google Scholar 

  45. Li, S.Z.: Markov random field modeling in image analysis. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  46. Medina, R., Garreau, M., et al.: Markov random field modeling for three-dimensional reconstruction of the left ventricle in cardiac angiography. IEEE Transactions on Medical Imaging 25(8), 1087–1100 (2006)

    Article  Google Scholar 

  47. Suliga, M., Deklerck, R., Nyssen, E.: Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Computerized Medical Imaging and Graphics 32, 502–512 (2008)

    Article  Google Scholar 

  48. Yu, S.N., Li, K.Y., Huang, Y.K.: Detection of microcalcifications in digital mammograms using wavelet filter and markov random field model. Computerized Medical Imaging and Graphics 30, 163–173 (2006)

    Article  Google Scholar 

  49. Tsujii, O., Freedman, M.T., Mun, S.K.: Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network. Pattern Recognition 32, 891–903 (1999)

    Article  Google Scholar 

  50. Cheng, H.D., Wang, J., Shi, X.: Microcalcification detection using fuzzy logic and scale space approach. Pattern Recognition 37, 363–375 (2004)

    Article  MATH  Google Scholar 

  51. Papadopoulos, A., Fotiadis, D.I., Likas, A.: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artificial Intelligence in Medicine 34, 141–150 (2005)

    Article  Google Scholar 

  52. De Santo, M., Molinara, M., Tortorella, F., Vento, M.: Automatic classification of clustered microcalcifications by a multiple expert system. Pattern Recognition (3), 1467–1477 (2003)

    Google Scholar 

  53. D’Elia, C., Marrocco, C., Molinara, M., Tortorella, F.: Detection of Clusters of Microcalcifications in Mammograms: A Multi Classifier Approach. In: Proc. 21st IEEE International Symposium on Computer-based Medical Systems, pp. 572–577. IEEE Computer Society Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  54. D’Elia, C., Poggi, G., Scarpa, G.: A tree-structured Markov random field model for bayesian image segmentation. IEEE Transactions on Image Processing 12(10), 1259–1273 (2003)

    Article  MathSciNet  Google Scholar 

  55. Marrocco, C., Molinara, M., Tortorella, F.: Algorithms for detecting clusters of microcalcifications in mammograms. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 884–891. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  56. Peng, Y., Yao, B., Jiang, J.: Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artificial Intelligence in Medicine 37, 43–53 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capriglione, D., Ferrigno, L., Liguori, C., Paolillo, A., Sommella, P., Tortorella, F. (2010). Digital Processing of Diagnostic Images. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. Lecture Notes in Electrical Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05167-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05167-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05166-1

  • Online ISBN: 978-3-642-05167-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics