Skip to main content
  • 5883 Accesses

Abstract

In experimental particle physics as well as in many other fields, it has become increasingly important to analyze data in a manner that extracts the maximum information and takes into account all of the known uncertainties. This article reviews the most important statistical methods used to carry out this task. It begins with an overview of probability, as this forms the basis for quantifying uncertainty. The statistical methods considered include the general framework of statistical tests and parameter estimation, including methods for constructing intervals such as upper limits. Both frequentist and Bayesian approaches are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This chapter is largely excerpted and adapted from the reviews on Probability and Statistics in the Review of Particle Physics by the Particle Data Group Nakamura et al. (2010).

References

  • Nakamura K et al (2010) (Particle Data Group), J Phys G37, 075021

    ADS  Google Scholar 

  • Baker S, Cousins R (1984) Nucl Inst Meth 221:437 (For a reveiw)

    Google Scholar 

  • Barlow R (1990) Nucl Inst Meth A297:496

    ADS  Google Scholar 

  • Bernardo JM, Smith AFM (2000) Bayesian theory. Wiley, Chichester

    MATH  Google Scholar 

  • Cousins RD (1995) Am J Phys 63:398

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cowan G (1998) Statistical data analysis. Oxford University Press, New York

    Google Scholar 

  • Demortier L (2007) P-values and nuisance parameters. In: Proceedings of PHYSTAT 2007, CERN-2008-001, p 23

    Google Scholar 

  • Feldman GJ, Cousins RD (1998) Phys Rev D57:3873

    ADS  Google Scholar 

  • Gregory PC (2005) Bayesian logical data analysis for the physical sciences, Cambridge University Press, Cambrdige

    Book  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Höcker A et al (2007) TMVA users guide, physics/0703039; software available from tmva.sf.net

    Google Scholar 

  • James FE (2007) Statistical methods in experimental physics, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  MATH  Google Scholar 

  • Kass RE, Wasserman L (1996) The selection of prior distributions by formal rules. J Am Stat Assoc 91(435): 1343–1370

    Article  MATH  Google Scholar 

  • Kolmogorov AN (1993) Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin; Foundations of the theory of probability, 2nd edn. Chelsea, New York 1956

    Google Scholar 

  • Kuncheva LI (2004) Combining pattern classifiers. Wiley, New York

    Book  MATH  Google Scholar 

  • Links to the Proceedings of the PHYSTAT conference series, (Durham 2002, Stanford 2003, Oxford 2005, and Geneva 2007) can be found at phystat.org

    Google Scholar 

  • Lyons L (1986) Statistics for nuclear and particle PHysicists. Cambridge University Press, New York

    Google Scholar 

  • Narsky I (2005) StatPatternRecognition: a C + + package for statistical analysis of high energy physics data, physics/0507143 (2005); software available from sourceforge.net/ projects/statpatrec

    Google Scholar 

  • O’Hagan A, Forster JJ (2004) Bayesian inference. In: Kendall’s advanced theory of statistics, vol 2B, 2nd edn. Arnold, London

    Google Scholar 

  • Roe BP, Woodroofe MB (2001) Phys Rev D63:13009

    ADS  Google Scholar 

  • Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial, Oxford University Press, New York

    MATH  Google Scholar 

  • Stuart A, Ord JK, Arnold S (1999) Kendall’s advanced theory of statistics. In: Kendall M, Stuart A (eds) Classical inference and the linear model, vol 2A, 6th edn. Oxford University Press, New York

    Google Scholar 

  • Webb A (2002) Statistical pattern recognition, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cowan, G. (2012). Statistics. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_5

Download citation

Publish with us

Policies and ethics