Skip to main content

Accelerators for Particle Physics

  • Reference work entry
Handbook of Particle Detection and Imaging
  • 5968 Accesses

  • 1 Citation

Abstract

Beams of high-energy particles with well-defined properties are very important both for fundamental research and applied sciences. Particle accelerators are the devices that allow to produce these high-energy particle beams.

High-energy particle accelerators have a length of many kilometers and are the largest scientific tools used today. We give a short overview over the main types of accelerators, and in particular synchrotrons, storage rings, and linear accelerators, their main properties and fields of application.

The concepts and basic formulas are illustrated and discussed using the main parameters of the largest existing or planned high-energy accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amaldi U (2000) The importance of particle accelerators. Europhys News 31N6:5–9

    Article  ADS  Google Scholar 

  • Assmann R, Lamont M, Myers S (2002) A brief history of the lep collider. Nucl Phys Proc Suppl 109B:17–31. CERN-SL-2002-009

    Article  ADS  Google Scholar 

  • Bailey R et al (2002) The LEP collider. C R Acad Sci (Paris) 9:1107–1120

    Google Scholar 

  • Biagini M (ed) (2009) e+ecolliders: past and present experiences and future frontiers. ICFA Beam Dyn Newsl 48:23–278

    Google Scholar 

  • Brandt D, Burkhardt H, Lamont M, Myers S, Wenninger J (2000) Accelerator physics at LEP. Rep Prog Phys 63:939

    Article  ADS  Google Scholar 

  • Burkhardt H, Jowett JM (2009) A retrospective on LEP. ICFA Beam Dyn Newsl 48:143–152

    Google Scholar 

  • Butterworth A et al (2008) The LEP2 superconducting RF system. Nucl Instrum Method A587: 151–177

    ADS  Google Scholar 

  • Chao AW, Chou W (2010) Reviews of accelerator science and technology: medical applications of accelerators, vol 2. World Scientific, Singapore

    Google Scholar 

  • Conte M, MacKay WW (2008) An introduction of particle accelerators. World Scientific, Singapore

    Google Scholar 

  • Courant E, Snyder H (1958) Theory of the alternating-gradient synchrotron. Ann Phys 3:1

    Article  MATH  ADS  Google Scholar 

  • Ellis JR, Giudice G, Mangano ML, Tkachev I, Wiedemann U (2008) Review of the Safety of LHC collisions. J Phys G35:115004

    Article  ADS  Google Scholar 

  • Evans L (2009) The large hadron collider: a marvel of technology. EPFL Press, Lausanne

    Google Scholar 

  • Evans L, Bryant P (eds) (2008) LHC machine. J Instrum 3:S08001

    Google Scholar 

  • Greene D, Williams PC (1997) Linear accelerators for radiation therapy (medical science). Taylor & Francis, New York, NY

    Google Scholar 

  • Häubner K (2004) Designing and building LEP. Phys Rep 403–404:177–188

    Article  Google Scholar 

  • Herr W, Muratori B (15–26 Sep 2003) Concept of luminosity, CAS – CERN accelerator school: Intermediate course on accelerator Physics. Zeuthen, Germany, pp 361–378.http://cdsweb.cern.ch/record/941318

  • Hill GW (1886) On the part of the motion of lunar perigee which is a function of the mean motions of the Sun and Moon. Acta Math 8:1–36

    Article  MATH  MathSciNet  Google Scholar 

  • Hofmann A (2004) The physics of synchrotron radiation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • ILC (2007) ILC reference design report.http://www.linearcollider.org/cms/?pid=1000437

  • Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  • Lee SY (2004) Accelerator physics. World Scientific, Singapore

    Google Scholar 

  • Mathieu E (1868) Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal des Mathématiques Pures et Appliquées 13:137–203

    Google Scholar 

  • McMillan EM (1945) The synchrotron—A proposed high energy particle accelerator. Phys Rev 68(5–6):143–144

    Article  ADS  Google Scholar 

  • Nunan CS (1965) A positron linear accelerator design. Proc Pac IEEE Trans Nucl Sci 12(3):465

    Article  ADS  Google Scholar 

  • Schwinger J (1949) On the classical radiation of accelerated electrons. Phys Rev 75:1912.http://link.aps.org/doi/10.1103/PhysRev.75.1912

  • Scrivens R (2003) Electron and ion sources for particle accelerators. CAS 2003, CERN-2006-002

    Google Scholar 

  • Scrivens R (2004) Proton and ion sources for high intensity accelerators. Proc EPAC 2004 and CERN-AB-2004-075,http://cdsweb.cern.ch/record/793626

  • Sokolov AA, Ternov IM (1986) Radiation from relativistic electrons. American Institute of Physics, New York

    Google Scholar 

  • Tsai Y-S (1974) Pair production and Bremsstrahlung of charged leptons. Rev Mod Phys 46:815–851

    Article  ADS  Google Scholar 

  • Veksler V (1945) Concerning some new methods of acceleration of relativistic particles. J Phys USSR 9:153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Burkhardt, H. (2012). Accelerators for Particle Physics. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_7

Download citation

Publish with us

Policies and ethics