Skip to main content

Increasing Speed Scheduling and Flow Scheduling

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

  • 856 Accesses

Abstract

Network flows and scheduling have been studied intensely, but mostly separately. In many applications a joint optimization model for routing and scheduling is desireable. Therefore, we study flows over time with a demand split into jobs. Our objective is to minimize the weighted sum of completion times of these jobs. This is closely related to preemptive scheduling on a single machine with a processing speed increasing over time. For both, flow scheduling and increasing speed scheduling, we provide an EPTAS. Without release dates we can prove a tight approximation factor of \((\sqrt{3}+1)/2\) for Smith’s rule, by fully characterizing the worst case instances. We give exact algorithms for some special cases and a dynamic program for speed functions with a constant number of speeds. We can prove a competitive ratio of 2 for the online version. We also study the class of blind algorithms, i.e., those which schedule without knowledge of the speed function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS 1999), pp. 32–44. IEEE, Los Alamitos (1999)

    Google Scholar 

  2. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Mathematics of Operations Research 34, 499–512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., Stougie, L.: Universal sequencing on a single machine. In: Eisenbrand, F., Shepherd, F.B. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 6080, pp. 230–243. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Fleischer, L.: Faster algorithms for the quickest transshipment problem with zero transit times. In: Proceedings of the 9th Annual Symposium on Discrete Algorithms (SODA 1998), pp. 147–156 (1998)

    Google Scholar 

  5. Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 397–409. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science 379, 387–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 268–277. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems. In: Proceedings of the 5th Annual Symposium on Discrete Algorithms (SODA 1994), pp. 433–441 (1994)

    Google Scholar 

  10. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Progress in Combinatorial Optimization, pp. 245–261. Academic Press, London (1984)

    Chapter  Google Scholar 

  11. Meilijson, I., Tamir, A.: Minimizing flow time on parallel identical processors with variable unit processing time. Operations Research 32(2), 440–448 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Operations Research 21, 517–527 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Queyranne, M., Schulz, A.S.: Scheduling unit jobs with compatible release dates on parallel machines with nonstationary speed. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 307–320. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine scheduling. Journal of Scheduling, 121–133 (2002)

    Google Scholar 

  15. Smith, W.E.: Various optimizers for single-stage production. Naval Research and Logistics Quarterly, 59–66 (1956)

    Google Scholar 

  16. Stiller, S., Wiese, A.: Increasing speed scheduling and flow scheduling. Technical Report 007-2010, Technische Universität Berlin (February 2010)

    Google Scholar 

  17. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Operations Research 19, 1602–1612 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow algorithms (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stiller, S., Wiese, A. (2010). Increasing Speed Scheduling and Flow Scheduling. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics