Abstract
The number of new adaptive optics applications has soared during the last decade, demonstrating the need for low-cost, high-stroke deformable mirrors with a large number of actuators. Magnetic fluid deformable mirrors (MFDMs) were proposed a few years ago as an alternative to conventional membrane deformable mirrors used in wavefront correctors. Though the idea of these magnetic fluid deformable mirrors is quite recent, they have been appraised by a number of preliminary studies as a promising future technology. This chapter first presents a brief review of the MFDM development history. The operating principle and composition of MFDMs are discussed, including a brief description of important properties of magnetic fluids and metal liquid-like films (MELLFs)—the key constituents of an MFDM. The known advantages, limitations, and potential applications of this new type of deformable mirrors are also discussed, followed by an outline of the research developments presented in the following chapters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borra EF (2009) Liquid mirrors in engineering. Optics & Photonics News, pp 14–17, September 2009
Borra EF, Content R, Girard L, Szapiel S, Tremblay LM, Boily E (1992) Liquid mirrors: optical shop tests and contributions to the technology. Astrophys J 393:829–847
Borra EF, Brousseau D, Vincent A (2006) Large magnetic liquid mirrors. Astron Astrophys 446(1):389–393
Borra EF, Brousseau D, Cliche M, Parent J (2008) Aberration correction with a magnetic liquid active mirror. Mon Not R Astron Soc 391(4):1925–1930
Brousseau D, Borra EF, Ruel HJ, Parent J (2006) A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt Express 14:11486–11493
Brousseau D, Borra EF, Thibault S (2007) Wavefront correction with a 37–actuator ferrofluid deformable mirror. Opt Express 15:18190–18199
Brousseau D, Borra EF, Rochette M, Landry DB (2010) Linearization of the response of a 91-actuator magnetic liquid deformable mirror. Opt Express 18(8):8239–8250
Brousseau D, Drapeau J, Piché M, Borra EF (2011) Generation of Bessel beams using a magnetic liquid deformable mirror. Appl Opt 50:4005–4010
Cabanac R, Borra EF (1998) A search for peculiar objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope. Astrophys J 509:309–323
Charles SW (2002) The preparation of magnetic fluids. In: Stefan Odenbach (ed) LNP 594, Springer-Verlag Berlin Heidelberg, pp 3–18
Cowley MD, Rosensweig RE (1967) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688
Dery JP, Borra EF, Ritcey AM (2008) Ethylene glycol based ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem Mater 20(20):6420–6426
Doble N, Williams DR (2004) The applications of MEMS technology for AO in vision science. IEEE J Sel Top Quantum Electron 10(3):629–635
Fernandez EJ, Iglesias I, Artal P (2001) Closed-loop adaptive optics in the human eye. Opt Lett 26:746–748
Gingras J, Dry JP, Yockell-Lelivre H, Borra E, Ritcey AM (2006) Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf A Physicochem Eng Asp 279:79–86
Gollwitzer C, Matthies G, Richter R, Rehberg I, Tobiska L (2007) The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J Fluid Mech 571:455–474
Gordon KC, McGarvey JJ, Taylor KP (1989) Enhanced Raman scattering from liquid metal films formed from silver solution. J Phys Chem 93:6814
Hickson P, Mulrooney MK (1997) University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of the survey. Astrophys J Suppl 115:35–42
Hofer H, Artal P, Singer B, Aragon JL, Williams DR (2001) Dynamics of the eye’s aberration. J Opt Soc Am A 18(3):497–505
Iqbal A, Ben Amara F (2008) Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror. Int J Optomechatron 2(2):126–143
Iqbal A, Wu Z, Ben Amara F (2009) Closed-loop control of magnetic fluid deformable mirrors. Opt Express 17(21):18957–18970
Iqbal A, Wu Z, Ben Amara F (2010a) Mixed sensitivity H∞ control of magnetic fluid deformable mirrors. IEEE/ASME Trans Mechatron 15(4):548–556
Iqbal A, Wu Z, Ben Amara F (2010b) A decentralized robust PID controller design for the shape control of a magnetic fluid deformable mirror. Int J Optomechatron 4(3):246–268
Jones TB (1988) Theory and application of ferrofluid seals. In: Berkovsky B (ed) Introduction to thermomechanics of magnetic fluids. Hemisphere, Washington, DC
Laird P, Bergamasco R, Berube V, Borra EF, Ritcey AM, Rioux M, Robitaille N, Thibault S, Lande Vieira da Silva Jr., Yockell-Lelivre H (2003) Ferrofluid-based deformable mirrors: a new approach to AO using liquid mirrors. In: Wizinowich PL, Bonaccini D (eds) Adaptive Optical System Technologies II, Proceedings of SPIE, vol. 4839, the International Society for Optical Engineering
Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt 45(15):3495–3500
Maxwell GF et al (2008) Ferrofluid. http://en.wikipedia.org/wiki/Ferrofluid, Wikipedia
Nakano M, Matsuura H, Dong-Ying J, Kumazawa T, Kimura S, Uozumi, Tonohata Y, Koide N, Noda K, Bian N, Akutsu P, Masuyama M, Makino K (2008) Drug delivery system using nano-magnetic fluid, ICICIC’08. In: 3rd international conference on innovative computing information and control, p 338, 18–20 June 2008
Papal SS (1965) Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, US Patent, 3215572
Parent J, Thibault S (2011) Locally magnifying imager. Opt Express 19(6):5676–5689
Parent J, Borra EF, Brousseau D, Ritcey AM, Dery JP, Thibault S (2009) Dynamic response of ferrofluidic deformable mirrors. Appl Opt 48(1):1–6
Ragazzoni R, Marchetti E (1994) A liquid adaptive mirror. Astron Astrophys 283:L17–L19
Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Mineola
Seaman A, Macpherson JB, Borra EF, Ritcey AM, Asselin D, Jerominek H, Thibault S, Campbell MC (2007) Hartmann-Shack measurements of ferrofluidic mirror dynamics. In: Photonics 575 North 2007, Proceedings of the SPIE 6796, no. 679603, Ottawa, Ontario, Canada
Shutter WH, Whitehead LA (1994) A wide sky coverage ferrofluid mercury telescope. Astrophys J 424:L139–L141
Thibault S, Brousseau D, Rioux M, Senkow S, Dery JP, Borra EF, Ritcey AM (2006) Nanoengineered ferrofluid deformable mirror: a progress report. In: Ellerbroek BL, Domenico BC (eds) Advances in adaptive optics II, Proceedings of SPIE 6272, no. 627231, Orlando, FL, USA
Wood RW (1909) The mercury paraboloid as a reflecting telescope. Astrophys J 29:164–176
Wuerker R (1997) Bistatic LMT lidar alignment. Opt Eng 36:1421–1424
Yogev D, Efrima S (1988) Novel silver metal liquid-like films. J Phys Chem 92:5754–5760
Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanoparticle Res 3:73–78
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wu, Z., Iqbal, A., Amara, F.B. (2013). Magnetic Fluid Deformable Mirrors. In: Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32229-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-32229-7_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32228-0
Online ISBN: 978-3-642-32229-7
eBook Packages: EngineeringEngineering (R0)