Skip to main content

Abstract

The number of new adaptive optics applications has soared during the last decade, demonstrating the need for low-cost, high-stroke deformable mirrors with a large number of actuators. Magnetic fluid deformable mirrors (MFDMs) were proposed a few years ago as an alternative to conventional membrane deformable mirrors used in wavefront correctors. Though the idea of these magnetic fluid deformable mirrors is quite recent, they have been appraised by a number of preliminary studies as a promising future technology. This chapter first presents a brief review of the MFDM development history. The operating principle and composition of MFDMs are discussed, including a brief description of important properties of magnetic fluids and metal liquid-like films (MELLFs)—the key constituents of an MFDM. The known advantages, limitations, and potential applications of this new type of deformable mirrors are also discussed, followed by an outline of the research developments presented in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Borra EF (2009) Liquid mirrors in engineering. Optics & Photonics News, pp 14–17, September 2009

    Google Scholar 

  • Borra EF, Content R, Girard L, Szapiel S, Tremblay LM, Boily E (1992) Liquid mirrors: optical shop tests and contributions to the technology. Astrophys J 393:829–847

    Article  Google Scholar 

  • Borra EF, Brousseau D, Vincent A (2006) Large magnetic liquid mirrors. Astron Astrophys 446(1):389–393

    Article  Google Scholar 

  • Borra EF, Brousseau D, Cliche M, Parent J (2008) Aberration correction with a magnetic liquid active mirror. Mon Not R Astron Soc 391(4):1925–1930

    Article  Google Scholar 

  • Brousseau D, Borra EF, Ruel HJ, Parent J (2006) A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt Express 14:11486–11493

    Article  Google Scholar 

  • Brousseau D, Borra EF, Thibault S (2007) Wavefront correction with a 37–actuator ferrofluid deformable mirror. Opt Express 15:18190–18199

    Article  Google Scholar 

  • Brousseau D, Borra EF, Rochette M, Landry DB (2010) Linearization of the response of a 91-actuator magnetic liquid deformable mirror. Opt Express 18(8):8239–8250

    Article  Google Scholar 

  • Brousseau D, Drapeau J, Piché M, Borra EF (2011) Generation of Bessel beams using a magnetic liquid deformable mirror. Appl Opt 50:4005–4010

    Article  Google Scholar 

  • Cabanac R, Borra EF (1998) A search for peculiar objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope. Astrophys J 509:309–323

    Article  Google Scholar 

  • Charles SW (2002) The preparation of magnetic fluids. In: Stefan Odenbach (ed) LNP 594, Springer-Verlag Berlin Heidelberg, pp 3–18

    Google Scholar 

  • Cowley MD, Rosensweig RE (1967) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688

    Article  MATH  Google Scholar 

  • Dery JP, Borra EF, Ritcey AM (2008) Ethylene glycol based ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem Mater 20(20):6420–6426

    Article  Google Scholar 

  • Doble N, Williams DR (2004) The applications of MEMS technology for AO in vision science. IEEE J Sel Top Quantum Electron 10(3):629–635

    Article  Google Scholar 

  • Fernandez EJ, Iglesias I, Artal P (2001) Closed-loop adaptive optics in the human eye. Opt Lett 26:746–748

    Article  Google Scholar 

  • Gingras J, Dry JP, Yockell-Lelivre H, Borra E, Ritcey AM (2006) Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf A Physicochem Eng Asp 279:79–86

    Article  Google Scholar 

  • Gollwitzer C, Matthies G, Richter R, Rehberg I, Tobiska L (2007) The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J Fluid Mech 571:455–474

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon KC, McGarvey JJ, Taylor KP (1989) Enhanced Raman scattering from liquid metal films formed from silver solution. J Phys Chem 93:6814

    Article  Google Scholar 

  • Hickson P, Mulrooney MK (1997) University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of the survey. Astrophys J Suppl 115:35–42

    Article  Google Scholar 

  • Hofer H, Artal P, Singer B, Aragon JL, Williams DR (2001) Dynamics of the eye’s aberration. J Opt Soc Am A 18(3):497–505

    Article  Google Scholar 

  • Iqbal A, Ben Amara F (2008) Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror. Int J Optomechatron 2(2):126–143

    Article  Google Scholar 

  • Iqbal A, Wu Z, Ben Amara F (2009) Closed-loop control of magnetic fluid deformable mirrors. Opt Express 17(21):18957–18970

    Article  Google Scholar 

  • Iqbal A, Wu Z, Ben Amara F (2010a) Mixed sensitivity H control of magnetic fluid deformable mirrors. IEEE/ASME Trans Mechatron 15(4):548–556

    Article  Google Scholar 

  • Iqbal A, Wu Z, Ben Amara F (2010b) A decentralized robust PID controller design for the shape control of a magnetic fluid deformable mirror. Int J Optomechatron 4(3):246–268

    Article  Google Scholar 

  • Jones TB (1988) Theory and application of ferrofluid seals. In: Berkovsky B (ed) Introduction to thermomechanics of magnetic fluids. Hemisphere, Washington, DC

    Google Scholar 

  • Laird P, Bergamasco R, Berube V, Borra EF, Ritcey AM, Rioux M, Robitaille N, Thibault S, Lande Vieira da Silva Jr., Yockell-Lelivre H (2003) Ferrofluid-based deformable mirrors: a new approach to AO using liquid mirrors. In: Wizinowich PL, Bonaccini D (eds) Adaptive Optical System Technologies II, Proceedings of SPIE, vol. 4839, the International Society for Optical Engineering

    Google Scholar 

  • Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt 45(15):3495–3500

    Article  Google Scholar 

  • Maxwell GF et al (2008) Ferrofluid. http://en.wikipedia.org/wiki/Ferrofluid, Wikipedia

  • Nakano M, Matsuura H, Dong-Ying J, Kumazawa T, Kimura S, Uozumi, Tonohata Y, Koide N, Noda K, Bian N, Akutsu P, Masuyama M, Makino K (2008) Drug delivery system using nano-magnetic fluid, ICICIC’08. In: 3rd international conference on innovative computing information and control, p 338, 18–20 June 2008

    Google Scholar 

  • Papal SS (1965) Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, US Patent, 3215572

    Google Scholar 

  • Parent J, Thibault S (2011) Locally magnifying imager. Opt Express 19(6):5676–5689

    Article  Google Scholar 

  • Parent J, Borra EF, Brousseau D, Ritcey AM, Dery JP, Thibault S (2009) Dynamic response of ferrofluidic deformable mirrors. Appl Opt 48(1):1–6

    Article  Google Scholar 

  • Ragazzoni R, Marchetti E (1994) A liquid adaptive mirror. Astron Astrophys 283:L17–L19

    Google Scholar 

  • Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Mineola

    Google Scholar 

  • Seaman A, Macpherson JB, Borra EF, Ritcey AM, Asselin D, Jerominek H, Thibault S, Campbell MC (2007) Hartmann-Shack measurements of ferrofluidic mirror dynamics. In: Photonics 575 North 2007, Proceedings of the SPIE 6796, no. 679603, Ottawa, Ontario, Canada

    Google Scholar 

  • Shutter WH, Whitehead LA (1994) A wide sky coverage ferrofluid mercury telescope. Astrophys J 424:L139–L141

    Article  Google Scholar 

  • Thibault S, Brousseau D, Rioux M, Senkow S, Dery JP, Borra EF, Ritcey AM (2006) Nanoengineered ferrofluid deformable mirror: a progress report. In: Ellerbroek BL, Domenico BC (eds) Advances in adaptive optics II, Proceedings of SPIE 6272, no. 627231, Orlando, FL, USA

    Google Scholar 

  • Wood RW (1909) The mercury paraboloid as a reflecting telescope. Astrophys J 29:164–176

    Article  Google Scholar 

  • Wuerker R (1997) Bistatic LMT lidar alignment. Opt Eng 36:1421–1424

    Article  Google Scholar 

  • Yogev D, Efrima S (1988) Novel silver metal liquid-like films. J Phys Chem 92:5754–5760

    Article  Google Scholar 

  • Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanoparticle Res 3:73–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizheng Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, Z., Iqbal, A., Amara, F.B. (2013). Magnetic Fluid Deformable Mirrors. In: Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32229-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32229-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32228-0

  • Online ISBN: 978-3-642-32229-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics