Skip to main content

The Evolution of Elastin

  • Chapter
  • First Online:
Evolution of Extracellular Matrix

Part of the book series: Biology of Extracellular Matrix ((BEM))

  • 1431 Accesses

Abstract

Elastin is the matrix protein imparting the physiologically essential properties of extensibility and elastic recoil to large arteries, lung parenchyma and other vertebrate tissues. Elastin is a polymeric protein formed from tropoelastin monomers and cross-linked, like collagens, through the side chains of lysine residues by the action of lysyl oxidase. Unlike many matrix proteins, elastin appeared relatively late in evolution, present in all species from sharks to humans, but absent at least as a vascular protein from lampreys, hagfish and other lower chordates and invertebrates. As an entropic elastomer, the polypeptide chains of elastin must remain disordered even in the polymeric state. Like many other disordered structural proteins, elastin has a low complexity, highly nonpolar and highly repetitive sequence, with the conservation of an unusual ‘style’ of sequence but an apparently relaxed requirement for precise sequence conservation, even between closely related species. Here, using both full-length and partial tropoelastin sequences representing the full range of phylogeny over which this protein is found, we describe the sequence elements and domain arrangements that are shared by all tropoelastins and are therefore likely to be required for its fundamental properties as an entropic elastomer. We then examine differences in sequence and domain arrangements between species perhaps representing adaptations to species- or tissue-specific functional requirements that may drive evolutionary changes. Finally, we consider the relationship of tropoelastins to other glycine-rich, nonpolar structural proteins that have been described in lower chordates and invertebrates and the possible evolutionary roots of this unusual protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Azbel MY (1994) Universal biological scaling and mortality. Proc Natl Acad Sci USA 91:12453–12457

    PubMed  CAS  Google Scholar 

  • Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O (2011) Transcriptomics of the bed bug (Cimex lectularius). PLoS One 6:e16336. doi:10.1371/journal.pone.0016336

    PubMed  CAS  Google Scholar 

  • Bressan GM, Argos P, Stanley KK (1987) Repeating structure of chick tropoelastin revealed by complementary DNA cloning. Biochemistry 26:1497–1503

    PubMed  CAS  Google Scholar 

  • Broekelmann TJ, Kozel BA, Ishibashi H, Werneck CC, Keeley FW, Zhang L, Mecham RP (2005) Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J Biol Chem 280:40939–40947

    PubMed  CAS  Google Scholar 

  • Broekelmann TJ, Ciliberto CH, Shifren A, Mecham RP (2008) Modification and functional inactivation of the tropoelastin carboxy-terminal domain in cross-linked elastin. Matrix Biol 27:631–639

    PubMed  CAS  Google Scholar 

  • Brown CJ, Johnson AK, Dunker AK, Daughdrill GW (2011) Evolution and disorder. Curr Opin Struct Biol 21:441–446

    PubMed  CAS  Google Scholar 

  • Brown-Augsburger P, Tisdale C, Broekelmann T, Sloan C, Mecham RP (1995) Identification of an elastin cross-linking domain that joins three peptide chains. J Biol Chem 270:17778–17783

    PubMed  CAS  Google Scholar 

  • Brown-Augsburger P, Broekelmann T, Rosenbloom J, Mecham RP (1996) Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly. Biochem J 318:149–155

    PubMed  CAS  Google Scholar 

  • Cain SA, Raynal B, Hodson N, Shuttleworth A, Kielty CM (2008) Biomolecular analysis of elastic fibre molecules. Methods 45:42–52

    PubMed  CAS  Google Scholar 

  • Cerdà J, Gründ C, Franke WW, Brand M (2002) Molecular characterization of calymmin, a novel notochord sheath-associated extracellular matrix protein in the zebrafish embryo. Dev Dyn 224:200–209

    PubMed  Google Scholar 

  • Chalmers GWG, Gosline JM, Lillie MA (1999) The hydrophobicity of vertebrate elastins. J Exp Biol 202:301–314

    PubMed  CAS  Google Scholar 

  • Cheng S, Cetinkaya M, Gräter F (2010) How sequence determines elasticity of disordered proteins. Biophys J 99:3863–3869

    PubMed  CAS  Google Scholar 

  • Christoffels A, Koh EGL, J-m C, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    PubMed  CAS  Google Scholar 

  • Chung MIS, Miao M, Stahl RJ, Chan E, Parkinson J, Keeley FW (2006) Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: clues to the evolutionary history of elastins. Matrix Biol 25:492–504

    PubMed  CAS  Google Scholar 

  • Cirulis JT, Bellingham CM, Davis EC, Hubmacher D, Reinhardt DP, Mecham RP, Keeley FW (2008) Fibrillins, fibulins, and matrix-associated glycoprotein modulate the kinetics and morphology of in vitro self-assembly of a recombinant elastin-like polypeptide. Biochemistry 47:12601–12613

    PubMed  CAS  Google Scholar 

  • Clarke AW, Arnspang EC, Mithieux SM, Korkmaz E, Braet F, Weiss AS (2006) Tropoelastin massively associates during coacervation to form quantized protein spheres. Biochemistry 45:9989–9996

    PubMed  CAS  Google Scholar 

  • Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7:667–672

    PubMed  CAS  Google Scholar 

  • Cox DL, Mecham RP, Sexton OJ (1982) Lysine derived cross-links are present in a non-elastin, proline-rich protein fraction of Iguana iguana eggshell. Comp Biochem Physiol B 72:619–623

    PubMed  CAS  Google Scholar 

  • Crombie G, Snider R, Faris B, Franzblau C (1981) Lysine-derived cross-links in the egg shell membrane. Biochim Biophys Acta 640:365–367

    PubMed  CAS  Google Scholar 

  • Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lü J (2011) miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 45:287–294

    PubMed  CAS  Google Scholar 

  • Davison IG, Wright GM, DeMont ME (1995) The structure and physical properties of invertebrate and primitive vertebrate arteries. J Exp Biol 198:2185–2196

    PubMed  CAS  Google Scholar 

  • Du B, Ma L-M, Huang M-B, Zhou H, Huang H-L, Shao P, Chen Y-Q, Qu L-H (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584:811–816

    PubMed  CAS  Google Scholar 

  • Faury G (2001) Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris) 49:310–325

    CAS  Google Scholar 

  • Fudge DS, Gardner KH, Forsyth VT, Riekel C, Gosline JM (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85:2015–2027

    PubMed  CAS  Google Scholar 

  • Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD (2007) Essential role of lysyl oxidases in notochord development. Dev Biol 307:202–213

    PubMed  CAS  Google Scholar 

  • Goldsmith MR, Kafatos FC (1984) Developmentally regulated genes in silkmoths. Annu Rev Genet 18:443–487

    PubMed  CAS  Google Scholar 

  • Gosline JM (1980) The elastic properties of rubber-like proteins and highly extensible tissues. In: Vincent JFV, Currey JD (eds) The mechanical properties of biological materials, Symposia of the Society for Experimental Biology, Number 34. Cambridge University Press, Cambridge

    Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    PubMed  CAS  Google Scholar 

  • Gray WR, Sandberg LB, Foster JA (1973) Molecular model for elastin structure and function. Nature 246:461–466

    PubMed  CAS  Google Scholar 

  • Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784

    PubMed  CAS  Google Scholar 

  • He D, Chung M, Chan E, Alleyne T, Ha KCH, Miao M, Stahl RJ, Keeley FW, Parkinson J (2007) Comparative genomics of elastin: sequence analysis of a highly repetitive protein. Matrix Biol 26:524–540

    PubMed  CAS  Google Scholar 

  • Heim RA, Pierce RA, Deak SB, Riley DJ, Boyd CD, Stolle CA (1991) Alternative splicing of rat tropoelastin mRNA is tissue-specific and developmentally regulated. Matrix 11:359–366

    PubMed  CAS  Google Scholar 

  • Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS (2007) Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol 5:31. doi:10.1186/1741-7007-5-31

    PubMed  Google Scholar 

  • Hew Y, Grzelczak Z, Lau C, Keeley FW (1999) Identification of a large region of secondary structure in the 3′-untranslated region of chicken elastin mRNA with implications for the regulation of mRNA stability. J Biol Chem 274:14415–14421

    PubMed  CAS  Google Scholar 

  • Hew Y, Lau C, Grzelczak Z, Keeley FW (2000) Identification of a GA-rich sequence as a protein-binding site in the 3′-untranslated region of chicken elastin mRNA with a potential role in the developmental regulation of elastin mRNA stability. J Biol Chem 275:24857–24864

    PubMed  CAS  Google Scholar 

  • Hsiao H, Stone PJ, Toselli P, Rosenbloom J, Franzblau C, Schreiber BM (1999) The role of the carboxy terminus of tropoelastin in its assembly into the elastic fiber. Connect Tissue Res 40:83–95

    PubMed  CAS  Google Scholar 

  • Hyllner SJ, Westerlund L, Olsson PE, Schopen A (2001) Cloning of rainbow trout egg envelope proteins: members of a unique group of structural proteins. Biol Reprod 64:805–811

    PubMed  CAS  Google Scholar 

  • Indik Z, Yeh H, Ornstein-Goldstein N, Sheppard P, Anderson N, Rosenbloom JC, Peltonen L, Rosenbloom J (1987) Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc Natl Acad Sci USA 84:5680–5684

    PubMed  CAS  Google Scholar 

  • Indik Z, Yeh H, Ornstein-Goldstein N, Kucich U, Abrams W, Rosenbloom JC, Rosenbloom J (1989) Structure of the elastin gene and alternative splicing of elastin mRNA: implications for human disease. Am J Med Genet 34:81–90

    PubMed  CAS  Google Scholar 

  • Kawashima T, Kawashima S, Tanaka C, Murai M, Yoneda M, Putnam NH, Rokhsar DS, Kanehisa M, Satoh N, Wada H (2009) Domain shuffling and the evolution of vertebrates. Genome Res 19:1393–1403

    PubMed  CAS  Google Scholar 

  • Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8:1–23

    PubMed  Google Scholar 

  • Knight DP, Vollrath F (2002) Biological liquid crystal elastomers. Philos Trans R Soc Lond B Biol Sci 357:155–163

    PubMed  CAS  Google Scholar 

  • Koch EA, Spitzer RH, Pithawalla RB, Castillos FA III, Parry DA (1995) Hagfish biopolymer: a type I/type II homologue of epidermal keratin intermediate filaments. Int J Biol Macromol 17:283–292

    PubMed  CAS  Google Scholar 

  • Kozel BA, Wachi H, Davis EC, Mecham RP (2003) Domains in tropoelastin that mediate elastin deposition in vitro and in vivo. J Biol Chem 278:18491–18498

    PubMed  CAS  Google Scholar 

  • Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207:87–96

    PubMed  CAS  Google Scholar 

  • Leach RM Jr, Rucker RB, Van Dyke GP (1981) Egg shell membrane protein: a nonelastin desmosine/isodesmosine-containing protein. Arch Biochem Biophys 207:353–359

    PubMed  CAS  Google Scholar 

  • Levine HJ (1997) Rest heart rate and life expectancy. J Am Coll Cardiol 30:1104–1106

    PubMed  CAS  Google Scholar 

  • Lillie MA, Gosline JM (2002) The viscoelastic basis for the tensile strength of elastin. Int J Biol Macromol 30:119–127

    PubMed  CAS  Google Scholar 

  • Litscher ES, Wassarman PM (2007) Egg extracellular coat proteins: from fish to mammals. Histol Histopathol 22:337–347

    PubMed  CAS  Google Scholar 

  • Liu Y, Shao Z, Vollrath F (2008a) Elasticity of spider silks. Biomacromolecules 9:1782–1786

    PubMed  CAS  Google Scholar 

  • Liu Y, Sponner A, Porter D, Vollrath F (2008b) Proline and processing of spider silks. Biomacromolecules 9:116–121

    PubMed  CAS  Google Scholar 

  • Maruyama SR, Anatriello E, Anderson JM, Ribeiro JM, Brandão LG, Valenzuela JG, Ferreira BR, Garcia GR, Szabó MP, Patel S, Bishop R, de Miranda-Santos IK (2010) The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense. BMC Genomics 11:363

    PubMed  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945

    PubMed  CAS  Google Scholar 

  • Miao M, Bellingham CM, Stahl RJ, Sitarz EE, Lane CJ, Keeley FW (2003) Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 278:48553–48562

    PubMed  CAS  Google Scholar 

  • Miao M, Bruce AEE, Bhanji T, Davis EC, Keeley FW (2007) Differential expression of two tropoelastin genes in zebrafish. Matrix Biol 26:115–124

    PubMed  CAS  Google Scholar 

  • Miao M, Stahl RJ, Petersen LF, Reintsch WE, Davis EC, Keeley FW (2009) Characterization of an unusual tropoelastin with truncated C-terminus in the frog. Matrix Biol 28:432–441

    PubMed  CAS  Google Scholar 

  • Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    PubMed  CAS  Google Scholar 

  • Muiznieks LD, Keeley FW (2010) Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J Biol Chem 285:39779–39789

    PubMed  CAS  Google Scholar 

  • Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88:239–250

    PubMed  CAS  Google Scholar 

  • Ott CE, Grünhagen J, Jäger M, Horbelt D, Schwill S, Kallenbach K, Guo G, Manke T, Knaus P, Mundlos S, Robinson PN (2011) MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3′ UTR and coding-sequence binding sites. PLoS One 6:e16250. doi:10.1371/journal.pone.0016250

    PubMed  CAS  Google Scholar 

  • Parks WC, Roby JD, Wu LC, Grosso LE (1992) Cellular expression of tropoelastin mRNA splice variants. Matrix 12:156–162

    PubMed  CAS  Google Scholar 

  • Partridge SM (1962) Elastin. Adv Protein Chem 17:227–302

    CAS  Google Scholar 

  • Patthy L (1996) Exon shuffling and other ways of module exchange. Matrix Biol 15:301–310

    PubMed  CAS  Google Scholar 

  • Pau RN (1984) Cloning of cDNA for a juvenile hormone-regulated oothecin mRNA. Biochim Biophys Acta 782:422–428

    CAS  Google Scholar 

  • Pober BR (2010) Williams-Beuren syndrome. N Engl J Med 362:239–252

    PubMed  CAS  Google Scholar 

  • Pollock J, Baule VJ, Rich CB, Ginsburg CD, Curtiss SW, Foster JA (1990) Chick tropoelastin isoforms. From the gene to the extracellular matrix. J Biol Chem 265:3697–3702

    PubMed  CAS  Google Scholar 

  • Powell JT, Vine N, Crossman M (1992) On the accumulation of D-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis 97:201–208

    PubMed  CAS  Google Scholar 

  • Rauscher S, Pomès R (2012) Structural disorder and protein elasticity. Adv Exp Med Biol 725:159–183

    PubMed  CAS  Google Scholar 

  • Rauscher S, Baud S, Miao M, Keeley FW, Pomès R (2006) Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14:1667–1676

    PubMed  CAS  Google Scholar 

  • Ritz-Timme S, Laumeier I, Collins MJ (2003) Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 149:951–959

    PubMed  CAS  Google Scholar 

  • Robson P, Wright GM, Sitarz E, Maiti A, Rawat M, Youson JH, Keeley FW (1993) Characterization of lamprin, an unusual matrix protein from lamprey cartilage. J Biol Chem 268:1440–1447

    PubMed  CAS  Google Scholar 

  • Robson P, Wright GM, Youson JH, Keeley FW (1997) A family of non-collagen-based cartilages in the skeleton of the sea lamprey, petromyzon marinus. Comp Biochem Physiol 118B:71–78

    CAS  Google Scholar 

  • Robson P, Wright GM, Youson JH, Keeley FW (2000a) The structure and organization of lamprin genes: multiple-copy genes with alternative splicing and convergent evolution with insect structural proteins. Mol Biol Evol 17:1739–1752

    PubMed  CAS  Google Scholar 

  • Robson P, Wright GM, Keeley FW (2000b) Distinct non-collagen based cartilages comprising the endoskeleton of the Atlantic hagfish, Myxine glutinosa. Anat Embryol 202:281–290

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  CAS  Google Scholar 

  • Rudall KM (1968) Comparative biology and biochemistry of collagen. In: Gould BS (ed) Treatise on collagen, vol 2, Part A. Academic, London

    Google Scholar 

  • Sage H (1983) The evolution of elastin: correlation of functional properties with protein structure and phylogenetic distribution. Comp Biochem Physiol 74B:373–380

    CAS  Google Scholar 

  • Sage H, Gray WR (1979) Studies on the evolution of elastin—I. Phylogenetic distribution. Comp Biochem Physiol 64B:313–327

    CAS  Google Scholar 

  • Sage H, Gray WR (1980) Studies on the evolution of elastin—II. Histology. Comp Biochem Physiol 66B:13–22

    CAS  Google Scholar 

  • Sage H, Gray WR (1981) Studies on the evolution of elastin—III. The ancestral protein. Comp Biochem Physiol 68B:473–480

    CAS  Google Scholar 

  • Savage KN, Gosline JM (2008a) The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J Exp Biol 211:1937–1947

    PubMed  CAS  Google Scholar 

  • Savage KN, Gosline JM (2008b) The role of proline in the elastic mechanism of hydrated spider silks. J Exp Biol 211:1948–1957

    PubMed  Google Scholar 

  • Scott RW, Olson MF (2007) LIM kinases: function, regulation and association with human disease. J Mol Med (Berl) 85:555–568

    CAS  Google Scholar 

  • Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    PubMed  CAS  Google Scholar 

  • Starcher BC, King GS (1980) The presence of desmosine and isodesmosine in eggshell membrane protein. Connect Tissue Res 8:53–55

    PubMed  CAS  Google Scholar 

  • Stevens ED, Randall DJ (1967) Changes in blood pressure, heart rate and breathing rate during moderate swimming activity in rainbow trout. J Exp Biol 46:307–315

    PubMed  CAS  Google Scholar 

  • Szabó Z, Levi-Minzi SA, Christiano AM, Struminger C, Stoneking M, Batzer MA, Boyd CD (1999) Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J Mol Evol 49:664–671

    PubMed  Google Scholar 

  • Tamburro AM, Bochicchia B, Pepe A (2003) Dissection of human tropoelastin: exon-by-exon chemical synthesis and related conformational studies. Biochemistry 42:13347–13362

    PubMed  CAS  Google Scholar 

  • Tamburro AM, Pepe A, Bochicchio B, Quaglino D, Ronchetti IP (2005) Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. J Biol Chem 280:2682–2690

    PubMed  CAS  Google Scholar 

  • Tamburro AM, Pepe A, Bochicchio B (2006) Localizing α-helices in human tropoelastin: assembly of the elastin “puzzle”. Biochemistry 45:9518–9530

    PubMed  CAS  Google Scholar 

  • Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679

    PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032

    PubMed  Google Scholar 

  • Venkatachalam CM, Urry DW (1981) Development of a linear helical conformation from its cyclic correlate. β-Spiral model of the elastin poly(pentapeptide) (VPGVG)n. Macromolecules 14:1225–1229

    CAS  Google Scholar 

  • Venkatesh B, Gilligan P, Brenner S (2000) Fugu: a compact vertebrate reference genome. FEBS Lett 476:3–7

    PubMed  CAS  Google Scholar 

  • Villarreal G Jr, Oh D-J, Kang MH, Rhee DJ (2011) Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest Ophthalmol Vis Sci 52:3391–3397

    PubMed  CAS  Google Scholar 

  • Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C 81:229–240

    CAS  Google Scholar 

  • Waite JH, Lichtenegger HC, Stucky GD, Hansma P (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43:7653–7662

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Shima A, Schartl M (2002) Evolutionary relationships between fish models. Nat Rev Genet 3:53–64

    PubMed  CAS  Google Scholar 

  • Wright GM, Keeley FW, DeMont ME (1998) Hagfish cartilage. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman & Hall, London

    Google Scholar 

  • Wright GM, Keeley FW, Robson P (2001) The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 304:165–174

    PubMed  CAS  Google Scholar 

  • Wu DD, Irwin DM, Zhang YP (2008) Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol 8:241

    PubMed  Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87:7120–7124

    PubMed  CAS  Google Scholar 

  • Yeo GC, Keeley FW, Weiss AS (2011) Coacervation of tropoelastin. Adv Colloid Interface Sci 167:94–103

    PubMed  CAS  Google Scholar 

  • Yeo GC, Baldock C, Tuukkanen A, Roessle M, Dyksterhuis LB, Wise SG, Matthews J, Mithieux SM, Weiss AS (2012) Tropoelastin bridge region positions the cell-interactive C terminus and contributes to elastic fiber assembly. Proc Natl Acad Sci USA 21:2878–2883

    Google Scholar 

  • Yoon K, May M, Goldstein N, Indik ZK, Oliver L, Boyd C, Rosenbloom J (1984) Characterization of a sheep elastin cDNA clone containing translated sequences. Biochem Biophys Res Commun 118:261–269

    PubMed  CAS  Google Scholar 

  • Zardoya R, Meyer A (1997) Molecular phylogenetic information on the identity of the closest living relative(s) of land vertebrates. Naturwissenschaften 84:389–397

    PubMed  CAS  Google Scholar 

  • Zhang M, Pierce RA, Wachi H, Mecham RP, Parks WC (1999) An open reading frame element mediates posttranscriptional regulation of tropoelastin and responsiveness to transforming growth factor beta1. Mol Cell Biol 19:7314–7326

    PubMed  CAS  Google Scholar 

  • Zhang P, Huang A, Ferruzzi J, Mechan RP, Starcher BC, Tellides G, Humphrey JD, Giordano FJ, Niklason LE, Sessa WC (2012) Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels. Arterioscler Thromb Vasc Biol 32:756–759

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the essential contributions to this work by present and former members of his research laboratory, including Richard Stahl, Lisa Muiznieks, Ming Miao, Eva Sitarz, Sean Reichheld and Martin Chung. Noeleen Loughran provided valuable assistance in the production of phylogenetic trees. This work was supported by operational grants from the Heart and Stroke Foundation of Ontario, the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. The author holds the Heart and Stroke Foundation of Ontario/Robert M. Freedom Chair in Cardiovascular Science at the Hospital for Sick Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred W. Keeley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keeley, F.W. (2013). The Evolution of Elastin. In: Keeley, F., Mecham, R. (eds) Evolution of Extracellular Matrix. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36002-2_4

Download citation

Publish with us

Policies and ethics