Abstract
Consider the notion of a “square-law” detector: If x is an input to the detector, then y = x 2 is its output or detected value. Consider next the case where x is a random variable with probability law p X(x). Then output y is also random. If so, what is its probability law p Y(y)? Certainly this should depend in some way upon p X(x), since x and y are closely related by the transformation y = x 2. The general question of how to find the law p Y(y) for a transformed or output RV is the subject of this chapter.
Preview
Unable to display preview. Download preview PDF.
References
L.I. Goldfischer: J. Opt. Soc. Am. 55, 247 (1965)
J.C. Dainty: Opt. Acta 17, 761 (1970)
D. Korff: Opt. Commun. 5, 188 (1972)
J.C. Dainty (ed.): Laser Speckle and Related Phenomena, 2nd ed., Topics in Applied Physics, Vol. 9 (Springer, Berlin, Heidelberg, New York 1982)
J.W. Goodman: Proc. IEEE 53, 1688 (1965)
K. Miyamoto: “Wave Optics and Geometrical Optics in Optical Design,” in Progress in Optics, Vol. 1, ed. by E. Wolf (North-Holland, Amsterdam 1961)
J.J. Burke: J. Opt. Soc. Am. 60, 1262 (1970)
W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 2 (Wiley, New York 1966) p. 50
J.W. Strohbehn: In Laser Beam Propagation in the Atmosphere, ed. J.W. Strohbehn, Topics in Applied Physics, Vol. 25 (Springer, Berlin, Heidelberg, New York 1978)
R.L. Phillips and L.C. Andrews: J. Opt. Soc. Am. 72, 864 (1982)
B.R. Frieden and A. Plastino: “Classical trajectories compatible with quantum mechanics”, Phys. Lett. A, under review
D. Bohm: Phys. Rev. 85, 166 (1952); see also PR. Holland: The Quantum Theory of Motion (Cambridge Univ. Press, England 1993)
H.H. Jeffreys: Scientific Inference, 3rd ed. (Cambridge Univ. Press, England 1973)
B.R. Frieden: Found. Phys. 16, 883 (1986)
E.T. Jaynes: Found. Phys. 3, 477 (1973)
A. Papoulis: Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York 1965) pp. 11–12
V. Volterra: Mem. Acad. Lincei 2, 31 (1926)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Frieden, B.R. (2001). Functions of Random Variables. In: Probability, Statistical Optics, and Data Testing. Springer Series in Information Sciences, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56699-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-56699-8_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41708-8
Online ISBN: 978-3-642-56699-8
eBook Packages: Springer Book Archive