Summary
The probability functions of the hypergeometric (Hy) and binomial (Bi) distributions are compared by means of simple majorizing functions (upper bounds) for the ratio R = Hy/Bi. After applying a suitable permutation of parameters (if necessary) R can always be kept below \( \sqrt {2} \).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematics Series 55, Washington DC
Brunk HD, Holstein JE, Williams FW (1968) A Comparison of Binomial Approximations to the Hypergeometric Distribution. The American Statistician 22:24–26
Lieberman GJ, Owen DB (1961) Tables of the Hypergeometric Probability Distribution. Stanford University Press, Stanford
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ahrens, J.H. (1987). A Comparison of Hypergeometric Distributions with Corresponding Binomial Distributions. In: Opitz, O., Rauhut, B. (eds) Ökonomie und Mathematik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72672-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-72672-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-72673-6
Online ISBN: 978-3-642-72672-9
eBook Packages: Springer Book Archive