Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 29))

  • 67 Accesses

Abstract

The first image that comes to mind when the word ‘network’ is mentioned is a traffic network, whether it be road or air traffic. Most of us are familiar with such networks since one rarely travels from one location to another without consulting a ‘map’, which is, in our terminology, a ‘network’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 1

  1. Akkanad, M. I. and E. Turban, “Some Comments on the Traveling Salesman Problem”, Oper. Res., Vol. 17, No. 3, May-June 1969.

    Google Scholar 

  2. Bellman, R. and R. Kalaba, “On the kth Best Policies”, Journal of SIAM, Vol. 8, No. 4, Dec. 1960.

    Google Scholar 

  3. Bellmore, M. and G. L. Nemhauser, “The Traveling Salesman Problem: A Survey”, Oper. Res., Vol. 16, No. 3, May-June 1968.

    Google Scholar 

  4. Busacker, R. G. and T. L. Saaty, “Finite Graphs and Networks”, McGraw-Hill, 1965.

    Google Scholar 

  5. Charnes, A. and W. W. Cooper, “A Network Interpretation and a Directed Subdual Algorithm for Critical Path Scheduling”, Jour. of Ind. Eng., Vol. 13, No. 4, 1962.

    Google Scholar 

  6. Clarke, S., A. Kirkonian and J. Rausen, “Computing the n Best Loopless Paths in a Network”, Journal of SIAM, Vol. II, No. 4, Dec. 1963, pp.1096–1102.

    Google Scholar 

  7. Dantzig, G. B., “On the Shortest Route Through a Network”, Mgt. Sc., Vol. 6, No. 2, Jan. 1960, pp. 187–190.

    Article  Google Scholar 

  8. Dantzig, G. B., “Linear Programming and Extensions”, Princeton Univ. Press, 1963.

    Google Scholar 

  9. Dijkstra, E. W., “A Note on Two Problems in Connexion with Graphs”, Numerische Mathematik, Vol. 1, pp. 269–271, 1959.

    Article  Google Scholar 

  10. Dreyfus, S. E., “An Appraisal of Some Shortest-Path Algorithms”, Oper. Res., Vol. 17, No. 3, May-June 1969.

    Google Scholar 

  11. Elmaghraby, S. E., “The Design of Production Systems”, Reinhold, 1966, pp. 98–140.

    Google Scholar 

  12. Fan, L. T. and C. W. Wang, “The Discrete Maximum Principle”, Wiley, 1964.

    Google Scholar 

  13. Farbey, B. A., A. H. Land and J. D. Murchland, “The Cascade Algorithm for Finding the Minimum Distances on a Graph”, Transport Network Theory Unit, London School of Economics, Nov. 1964.

    Google Scholar 

  14. Floyd, R. W., “Algorithm 97, Shortest Path”, Comm. ACM, Vol. 5, p.345, 1962.

    Article  Google Scholar 

  15. Ford, L. R. and D. R. Fulkerson, “Flows in Networks”, Princeton Univ. Press, 1962.

    Google Scholar 

  16. Geoffrion, A. M., “An Improved Implicit Enumeration Approach for Integer Programming”, Oper. Res., Vol. 17, No. 3, May-June 1969.

    Google Scholar 

  17. Hardgrave, W. W. and G. L. Nemhauser, “On the Relation Between the Traveling Salesman and the Longest Path Problems”, Oper. Res., Vol. 10, No. 5, Sept.-Oct. 1962.

    Google Scholar 

  18. Hoffman, W. and R. Pavley, “A Method for the Solution of the nth Best Path Problem”, Jour. Assoc. Comput. Mach., Vol. 6, 1959, pp. 506–514.

    Google Scholar 

  19. Hu, T. C., “Revised Matrix Algorithms for Shortest Paths”, IBM Research Center, Research Paper RC-1478, Sept. 1965.

    Google Scholar 

  20. Hu, T. C., “A Decomposition Algorithm for Shortest Paths in a Network”, IBM Watson Research Center, Yorktown Heights, N. Y., Feb. 1966.

    Google Scholar 

  21. Kruskal, J. B., Jr., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem”, Proc. Amer. Math. Soc., Vol. 7, 1956, pp. 48–50.

    Article  Google Scholar 

  22. Minty, G. J., “A Comment on the Shortest-Route Problem”, Oper. Res. Vol. 5, No. 5, Oct. 1957, p. 724.

    Article  Google Scholar 

  23. Moore, E. F., “The Shortest Path Through a Maze”, Proc. Intl. Symp. on The Theory of Switching, Part II, April 2–5, 1957. The Annals of the Computation Laboratory of Harvard Univ., Vol. 30, Harvard Univ. Press, 1959.

    Google Scholar 

  24. Murchland, J. D., “A New Method for Finding All Elementary Paths in a Complete Directed Graph”, LSE-TNT-22, London School of Economics, Oct. 1965.

    Google Scholar 

  25. Parikh, S. C., and W. S. Jewell, “Decomposition of Project Networks”, Mgt. Sc, Vol. 11, No. 3, Jan. 1965, pp. 438–443.

    Article  Google Scholar 

  26. Pierce, J. F., Jr. and D. J. Hatfield, “Production Sequencing by Combinatorial Programming,” Ch. 17 of Operations Research and Management Information Systems, Ed. by J. F. Pierce, Jr., TAPPI, 1966.

    Google Scholar 

  27. Pollack, M., “Solutions of the kth Best Route Through a Network — A Review”, Journ. Math. Analysis and Appl., Vol. 3, No. 3, Dec. 1961, pp. 547–659.

    Article  Google Scholar 

  28. Pollack, M., “The kth Best Route Through a Network”, Oper. Res.,Vol. 9, No. 4, July-August 1961, pp. 578–580.

    Article  Google Scholar 

  29. Pollack, M., and W. Wiebenson, “Solutions of the Shortest Route Problem-A Review”, Oper. Res., Vol. 8, No. 2, March-April 1960, pp. 224–230.

    Article  Google Scholar 

  30. Prim, R. C., “Shortest Connection Networks and Some Generalizations”, Bell System Technical Jour., Vol. 36, 1957, pp. 1389–1401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Elmaghraby, S.E. (1970). The Shortest Path Problems. In: Some Network Models in Management Science. Lecture Notes in Economics and Mathematical Systems, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80558-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80558-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04952-4

  • Online ISBN: 978-3-642-80558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics